These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12770027)
1. Larvae of an endoparasitoid, Cotesia kariyai (Hymenoptera: Braconidae), feed on the host fat body directly in the second stadium with the help of teratocytes. Nakamatsu Y; Fujii S; Tanaka T J Insect Physiol; 2002 Nov; 48(11):1041-1052. PubMed ID: 12770027 [TBL] [Abstract][Full Text] [Related]
2. The endoparasitoid Cotesia kariyai (Ck) regulates the growth and metabolic efficiency of Pseudaletia separata larvae by venom and Ck polydnavirus. Nakamatsu Y; Gyotoku Y; Tanaka T J Insect Physiol; 2001 Jun; 47(6):573-584. PubMed ID: 11249945 [TBL] [Abstract][Full Text] [Related]
3. Correlation between concentration of hemolymph nutrients and amount of fat body consumed in lightly and heavily parasitized hosts (Pseudaletia separata). Nakamatsu Y; Tanaka T J Insect Physiol; 2004; 50(2-3):135-41. PubMed ID: 15019514 [TBL] [Abstract][Full Text] [Related]
4. Development of Meteorus pulchricornis and regulation of its noctuid host, Pseudaletia separata. Suzuki M; Tanaka T J Insect Physiol; 2007 Oct; 53(10):1072-8. PubMed ID: 17675053 [TBL] [Abstract][Full Text] [Related]
5. Cotesia kariyai teratocytes: growth and development. Hotta M; Okuda T; Tanaka T J Insect Physiol; 2001 Jan; 47(1):31-41. PubMed ID: 11033165 [TBL] [Abstract][Full Text] [Related]
6. Proteotranscriptomics reveals the secretory dynamics of teratocytes, regulators of parasitization by an endoparasitoid wasp. Pinto CPG; Walker AA; Robinson SD; King GF; Rossi GD J Insect Physiol; 2022; 139():104395. PubMed ID: 35413336 [TBL] [Abstract][Full Text] [Related]
7. Influence of nutrient deficiency caused by host developmental arrest on the growth and development of a koinobiont parasitoid. Nakamatsu Y; Kuriya K; Harvey JA; Tanaka T J Insect Physiol; 2006; 52(11-12):1105-12. PubMed ID: 17095007 [TBL] [Abstract][Full Text] [Related]
8. Cotesia kariyai larvae need an anchor to emerge from the host Pseudaletia separata. Nakamatsu Y; Tanaka T; Harvey JA Arch Insect Biochem Physiol; 2007 Sep; 66(1):1-8. PubMed ID: 17694565 [TBL] [Abstract][Full Text] [Related]
9. Parasitic castration of Pseudaletia separata by Cotesia kariyai and its association with polydnavirus gene expression. Tanaka T; Tagashira E J Insect Physiol; 1998 Sep; 44(9):733-744. PubMed ID: 12769869 [TBL] [Abstract][Full Text] [Related]
10. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells. Nakamatsu Y; Tanaka T J Insect Physiol; 2004 Apr; 50(4):267-75. PubMed ID: 15081819 [TBL] [Abstract][Full Text] [Related]
11. Endocrine interrelationship between the parasitoid Chelonus sp. and its host Trichoplusia ni. Grossniklaus-Bürgin C; Lanzrein B Arch Insect Biochem Physiol; 1990; 14(4):201-16. PubMed ID: 2134177 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of testicular growth and development in Manduca sexta larvae parasitized by the braconid wasp Cotesia congregata. Beckage NE; Reed DA J Insect Physiol; 1997 Feb; 43(1):29-38. PubMed ID: 12769927 [TBL] [Abstract][Full Text] [Related]
13. Immunosuppressive, antimicrobial and insecticidal activities of inhibitor cystine knot peptides produced by teratocytes of the endoparasitoid wasp Cotesia flavipes (Hymenoptera: Braconidae). Pinto CPG; Walker AA; King GF; Rossi GD Insect Sci; 2023 Aug; 30(4):1105-1117. PubMed ID: 36434808 [TBL] [Abstract][Full Text] [Related]
14. Quantification and development of teratocytes in novel-association host-parasitoid combinations. Alleyne M; Wiedenmann RN; Diaz RR J Insect Physiol; 2001 Dec; 47(12):1419-1427. PubMed ID: 12770148 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of juvenile hormone esterase activity in Lymantria dispar (Lepidoptera, Lymantriidae) larvae parasitized by Glyptapanteles liparidis (Hymenoptera, Braconidae). Schafellner C; Marktl RC; Schopf A J Insect Physiol; 2007 Aug; 53(8):858-68. PubMed ID: 17631309 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the serosal cells surrounding Cotesia kariyai larvae and their role in host immunosuppression. Okumura Y; Sawa T; Tanaka T; Nakamatsu Y J Insect Physiol; 2024 May; 154():104631. PubMed ID: 38518982 [TBL] [Abstract][Full Text] [Related]
17. WASP-ASSOCIATED FACTORS ACT IN INTERSPECIES COMPETITION DURING MULTIPARASITISM. Magdaraog PM; Tanaka T; Harvey JA Arch Insect Biochem Physiol; 2016 Jun; 92(2):87-107. PubMed ID: 26890630 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of parasitism-induced elevation of haemolymph growth-blocking peptide levels in host insect larvae (Pseudaletia separata). Endo Y; Ohnishi A; Hayakawa Y J Insect Physiol; 1998 Sep; 44(9):859-866. PubMed ID: 12769880 [TBL] [Abstract][Full Text] [Related]
19. Cotesia ruficrus (Hymenoptera: Braconidae) Parasitizing Cnaphalocrocis medinalis (Lepidoptera: Pyralidae): Developmental Interactions and Food Utilization Efficiency of Hosts. Chen Y; Liu XG; Wang J; Zhao J; Lu ZX; Liu YH J Econ Entomol; 2016 Apr; 109(2):588-93. PubMed ID: 26791819 [TBL] [Abstract][Full Text] [Related]
20. Host refractoriness of the tobacco hornworm, Manduca sexta, to the braconid endoparasitoid Cotesia flavipes. Rodríguez-Pérez MA; Dumpit RF; Lenz JM; Powell EN; Tam SY; Beckage NE Arch Insect Biochem Physiol; 2005 Dec; 60(4):159-71. PubMed ID: 16304618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]