BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12770120)

  • 1. Midgut exopeptidase activities in Aedes aegypti are induced by blood feeding.
    Noriega FG; Edgar KA; Bechet R; Wells MA
    J Insect Physiol; 2002 Feb; 48(2):205-212. PubMed ID: 12770120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular view of trypsin synthesis in the midgut of Aedes aegypti.
    Noriega FG; Wells MA
    J Insect Physiol; 1999 Jul; 45(7):613-620. PubMed ID: 12770346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of Plasmodium species.
    Billingsley PF; Rudin W
    J Parasitol; 1992 Jun; 78(3):430-40. PubMed ID: 1597785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood digestion in the mosquito, Anopheles stephensi Liston (Diptera: Culicidae): activity and distribution of trypsin, aminopeptidase, and alpha-glucosidase in the midgut.
    Billingsley PF; Hecker H
    J Med Entomol; 1991 Nov; 28(6):865-71. PubMed ID: 1770523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in the size of the amino acid pool is sufficient to activate translation of early trypsin mRNA in Aedes aegypti midgut.
    Noriega FG; Colonna AE; Wells MA
    Insect Biochem Mol Biol; 1999 Mar; 29(3):243-7. PubMed ID: 10319437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes.
    Isoe J; Rascón AA; Kunz S; Miesfeld RL
    Insect Biochem Mol Biol; 2009 Dec; 39(12):903-12. PubMed ID: 19883761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of the Aedes aegypti carboxypeptidase gene family.
    Isoe J; Zamora J; Miesfeld RL
    Insect Biochem Mol Biol; 2009 Jan; 39(1):68-73. PubMed ID: 18977440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary control of late trypsin gene transcription in Aedes aegypti.
    Noriega FG; Barillas-Mury C; Wells MA
    Insect Biochem Mol Biol; 1994 Jun; 24(6):627-31. PubMed ID: 7519098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of exopeptidases to formation of nonprotein nitrogen during ensiling of alfalfa.
    Tao L; Zhou H; Guo XS; Long RJ; Zhu Y; Cheng W
    J Dairy Sci; 2011 Aug; 94(8):3928-35. PubMed ID: 21787929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aedes aegypti midgut early trypsin is post-transcriptionally regulated by blood feeding.
    Noriega FG; Pennington JE; Barillas-Mury C; Wang XY; Wells MA
    Insect Mol Biol; 1996 Feb; 5(1):25-9. PubMed ID: 8630532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reevaluation of the role of early trypsin activity in the transcriptional activation of the late trypsin gene in the mosquito Aedes aegypti.
    Lu SJ; Pennington JE; Stonehouse AR; Mobula MM; Wells MA
    Insect Biochem Mol Biol; 2006 Apr; 36(4):336-43. PubMed ID: 16551547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus.
    Soares TS; Rodriguez Gonzalez BL; Torquato RJS; Lemos FJA; Costa-da-Silva AL; Capurro Guimarães ML; Tanaka AS
    Biochimie; 2018 Jan; 144():160-168. PubMed ID: 29133118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early trypsin activity is part of the signal transduction system that activates transcription of the late trypsin gene in the midgut of the mosquito, Aedes aegypti.
    Barillas-Mury CV; Noriega FG; Wells MA
    Insect Biochem Mol Biol; 1995 Feb; 25(2):241-6. PubMed ID: 7711754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti.
    Molina-Cruz A; Gupta L; Richardson J; Bennett K; Black W; Barillas-Mury C
    Am J Trop Med Hyg; 2005 May; 72(5):631-7. PubMed ID: 15891140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape.
    Dong S; Behura SK; Franz AWE
    BMC Genomics; 2017 May; 18(1):382. PubMed ID: 28506207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free amino acids are important for the retention of protein and non-protein meals by the midgut of Aedes aegypti females.
    Caroci AS; Noriega FG
    J Insect Physiol; 2003 Sep; 49(9):839-44. PubMed ID: 16256686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exopeptidase profiles of bifidobacteria.
    Minagawa E; Kaminogawa S; Tsukasaki F; Motoshima H; Yamauchi K
    J Nutr Sci Vitaminol (Tokyo); 1985 Dec; 31(6):599-606. PubMed ID: 3914536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a novel Kunitz type inhibitor, alocasin with anti-Aedes aegypti activity targeting midgut proteases.
    Vajravijayan S; Pletnev S; Pletnev VZ; Nandhagopal N; Gunasekaran K
    Pest Manag Sci; 2018 Dec; 74(12):2761-2772. PubMed ID: 29737039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exopeptidase degradation for the analysis of phosphorylation site in a mono-phosphorylated peptide with matrix-assisted laser desorption/ionization mass spectrometry.
    Mano N; Iijima S; Kasuga K; Goto J
    Anal Sci; 2003 Nov; 19(11):1469-72. PubMed ID: 14640440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and cDNA cloning of midgut carboxypeptidases from Trichoplusia ni.
    Wang P; Li G; Kain W
    Insect Biochem Mol Biol; 2004 Aug; 34(8):831-43. PubMed ID: 15262287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.