These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12770205)
1. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. Kostal V; Shimada K; Hayakawa Y J Insect Physiol; 2000 Apr; 46(4):417-428. PubMed ID: 12770205 [TBL] [Abstract][Full Text] [Related]
2. Dopamine and serotonin in the larval CNS of a drosophilid fly, Chymomyza costata: are they involved in the regulation of diapause? Kostal V; Noguchi H; Shimada K; Hayakawa Y Arch Insect Biochem Physiol; 1999 Oct; 42(2):147-62. PubMed ID: 10504208 [TBL] [Abstract][Full Text] [Related]
3. Developmental changes in dopamine levels in larvae of the fly Chymomyza costata: comparison between wild-type and mutant-nondiapause strains. Hayakawa Y; Shimada K; Noguchi H; Kostal V J Insect Physiol; 1998 Jul; 44(7-8):605-614. PubMed ID: 12769943 [TBL] [Abstract][Full Text] [Related]
4. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. Poupardin R; Schöttner K; Korbelová J; Provazník J; Doležel D; Pavlinic D; Beneš V; Koštál V BMC Genomics; 2015 Sep; 16():720. PubMed ID: 26391666 [TBL] [Abstract][Full Text] [Related]
5. Circadian component influences the photoperiodic induction of diapause in a drosophilid fly, Chymomyza costata. Kost'ál V; Noguchi H; Shimada K; Hayakawa Y J Insect Physiol; 2000 Jun; 46(6):887-896. PubMed ID: 10802100 [TBL] [Abstract][Full Text] [Related]
6. Influences of daylength and temperature on the period of diapause and its ending process in dormant larvae of burnet moths (Lepidoptera, Zygaenidae). Wipking W Oecologia; 1995 May; 102(2):202-210. PubMed ID: 28306875 [TBL] [Abstract][Full Text] [Related]
7. Why is the number of days required for induction of adult diapause in the linden bug Pyrrhocoris apterus fewer in the larval than in the adult stage? Hodkova M J Insect Physiol; 2015 Jun; 77():39-44. PubMed ID: 25891916 [TBL] [Abstract][Full Text] [Related]
8. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. Stehlík J; Závodská R; Shimada K; Sauman I; Kostál V J Biol Rhythms; 2008 Apr; 23(2):129-39. PubMed ID: 18375862 [TBL] [Abstract][Full Text] [Related]
9. Photoperiod-sensitive developmental delay in facet mutants of the drosophilid fly, Chymomyza costata and the genetic interaction with timeless. Shimada K J Insect Physiol; 2005 Jun; 51(6):649-53. PubMed ID: 15993129 [TBL] [Abstract][Full Text] [Related]
10. Effects of photoperiod and temperature on diapause induction in Conogethes punctiferalis (Lepidoptera: Pyralidae). Xu LR; Ni X; Wang ZY; He KL Insect Sci; 2014 Oct; 21(5):556-63. PubMed ID: 23956155 [TBL] [Abstract][Full Text] [Related]
11. Induction and termination of prepupal summer diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). Wu SH; Yang D; Lai XT; Xue FS J Insect Physiol; 2006; 52(11-12):1095-104. PubMed ID: 17081558 [TBL] [Abstract][Full Text] [Related]
12. Maternal and larval effects of photoperiod on the induction of larval diapause in two species of fly, Calliphora vicina and Lucilia sericata. Saunders DS; Macpherson JN; Cairncross KD Exp Biol; 1986; 46(1):51-8. PubMed ID: 3817113 [TBL] [Abstract][Full Text] [Related]
13. Effects of temperature and photoperiod on the termination of larval diapause in Lucilia sericata (Diptera: Calliphoridae). Tachibana S; Numata H Zoolog Sci; 2004 Feb; 21(2):197-202. PubMed ID: 14993832 [TBL] [Abstract][Full Text] [Related]
14. Cell cycle arrest as a hallmark of insect diapause: changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. Kostál V; Simůnková P; Kobelková A; Shimada K Insect Biochem Mol Biol; 2009 Dec; 39(12):875-83. PubMed ID: 19879357 [TBL] [Abstract][Full Text] [Related]
15. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Koštál V; Štětina T; Poupardin R; Korbelová J; Bruce AW Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8532-8537. PubMed ID: 28720705 [TBL] [Abstract][Full Text] [Related]
16. Pupal diapause of Helicoverpa armigera (Lepidoptera: Noctuidae): sensitive stage for thermal induction in the Okayama (western Japan) population. Kurban A; Yoshida H; Izumi Y; Sonoda S; Tsumuki H Bull Entomol Res; 2007 Jun; 97(3):219-23. PubMed ID: 17524153 [TBL] [Abstract][Full Text] [Related]
17. The role of photoperiod and temperature in determination of summer and winter diapause in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). Xue F; Spieth HR; Aiqing L; Ai H J Insect Physiol; 2002 Mar; 48(3):279-286. PubMed ID: 12770101 [TBL] [Abstract][Full Text] [Related]
18. Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. Salminen TS; Hoikkala A J Insect Physiol; 2013 Apr; 59(4):450-7. PubMed ID: 23428942 [TBL] [Abstract][Full Text] [Related]
19. The influence of physiological age of Argas reflexus larvae (Acari: Argasidae) and of temperature and photoperiod on induction and duration of diapause. Dautel H; Knülle W Oecologia; 1997 Dec; 113(1):46-52. PubMed ID: 28307293 [TBL] [Abstract][Full Text] [Related]
20. A comparison of photoperiodic control of diapause between aestivation and hibernation in the cabbage butterfly Pieris melete. Xiao HJ; Li F; Wei XT; Xue FS J Insect Physiol; 2008 May; 54(5):755-64. PubMed ID: 18440018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]