These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12770205)
21. Effect of photoperiod and temperature on the intensity of pupal diapause in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Chen C; Xia QW; Fu S; Wu XF; Xue FS Bull Entomol Res; 2014 Feb; 104(1):12-8. PubMed ID: 23651539 [TBL] [Abstract][Full Text] [Related]
22. Diapause termination, post-diapause development and reproduction in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Jiang XF; Huang SH; Luo LZ; Liu Y; Zhang L J Insect Physiol; 2010 Sep; 56(9):1325-31. PubMed ID: 20433846 [TBL] [Abstract][Full Text] [Related]
23. Repeated larval diapause and diapause-free development in geographic strains of the burnet moth Zygaena trifolii Esp. (Insecta, Lepidoptera) : I. Discontinuous clinal variation in photoperiodically controlled diapause induction. Wipking W Oecologia; 1988 Dec; 77(4):557-564. PubMed ID: 28311278 [TBL] [Abstract][Full Text] [Related]
24. Effects of temperature, soil moisture and photoperiod on diapause termination and post-diapause development of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Cheng W; Long Z; Zhang Y; Liang T; Zhu-Salzman K J Insect Physiol; 2017 Nov; 103():78-85. PubMed ID: 28987773 [TBL] [Abstract][Full Text] [Related]
25. In vitro reprogramming of the photoperiodic clock in an insect brain-retrocerebral complex. Bowen MF; Saunders DS; Bollenbacher WE; Gilbert LI Proc Natl Acad Sci U S A; 1984 Sep; 81(18):5881-4. PubMed ID: 6592591 [TBL] [Abstract][Full Text] [Related]
27. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Kostál V; Berková P; Simek P Comp Biochem Physiol B Biochem Mol Biol; 2003 Jul; 135(3):407-19. PubMed ID: 12831761 [TBL] [Abstract][Full Text] [Related]
28. Juvenile hormone changes associated with diapause induction, maintenance, and termination in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Jiang X; Huang S; Luo L Arch Insect Biochem Physiol; 2011 Jul; 77(3):134-44. PubMed ID: 21541990 [TBL] [Abstract][Full Text] [Related]
29. Effects of photoperiod and temperature on the rate of larval development, food conversion efficiency, and imaginal diapause in Leptinotarsa decemlineata. Dolezal P; Habustová O; Sehnal F J Insect Physiol; 2007 Aug; 53(8):849-57. PubMed ID: 17553521 [TBL] [Abstract][Full Text] [Related]
30. Photoperiodic control of diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae) based on a qualitative time measurement. Hua A; Yang D; Wu S; Xue F J Insect Physiol; 2005 Nov; 51(11):1261-7. PubMed ID: 16137697 [TBL] [Abstract][Full Text] [Related]
31. Diapause induction and termination in the predatory mite Euseius finlandicus in peach orchards in northern Greece. Broufas G Exp Appl Acarol; 2001; 25(12):921-32. PubMed ID: 12465847 [TBL] [Abstract][Full Text] [Related]
32. Effects of temperature and photoperiod on termination of pseudopupal diapause in the bean blister beetle, Epicauta gorhami. Terao M; Hirose Y; Shintani Y J Insect Physiol; 2012 May; 58(5):737-42. PubMed ID: 22402168 [TBL] [Abstract][Full Text] [Related]
33. Effects of constant and changing temperature conditions on diapause induction in Helicoverpa armigera (Lepidoptera: Noctuidae). Mironidis GK; Savopoulou-Soultani M Bull Entomol Res; 2012 Apr; 102(2):139-47. PubMed ID: 21892980 [TBL] [Abstract][Full Text] [Related]
34. Repeated cycles of chilling and warming effectively terminate prolonged larval diapause in the chestnut weevil, Curculio sikkimensis. Higaki M J Insect Physiol; 2006 May; 52(5):514-9. PubMed ID: 16546207 [TBL] [Abstract][Full Text] [Related]
35. Geographic Variation in Photoperiodic Response for Induction of Pseudopupal Diapause in Epicauta gorhami (Coleoptera: Meloidae). Terao M; Tokuda M; Shintani Y Environ Entomol; 2021 Oct; 50(5):1145-1150. PubMed ID: 34169313 [TBL] [Abstract][Full Text] [Related]
36. Selection for an optimal monovoltine life cycle in an unpredictable environment. Studies on the beetleCatops nigricans Spence (Col., Catopidae). Topp W Oecologia; 1990 Aug; 84(1):134-141. PubMed ID: 28312787 [TBL] [Abstract][Full Text] [Related]
37. Temperature and Photoperiodic Response of Diapause Induction in Zhao C; Guo Y; Liu Z; Xia Y; Li Y; Song Z; Zhang B; Li D Insects; 2021 Sep; 12(10):. PubMed ID: 34680641 [No Abstract] [Full Text] [Related]
38. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. Paolucci S; van de Zande L; Beukeboom LW J Evol Biol; 2013 Apr; 26(4):705-18. PubMed ID: 23496837 [TBL] [Abstract][Full Text] [Related]
39. Effects of photoperiod, temperature and aging on adult diapause termination and post-diapause development in female Asian comma butterflies, Polygonia c-aureum Linnaeus (Lepidoptera: Nymphalidae). Hiroyoshi S; Reddy GVP; Mitsuhashi J J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Oct; 204(9-10):849-858. PubMed ID: 30251035 [TBL] [Abstract][Full Text] [Related]
40. [Temperature and photoperiodic control of diapause induction in the ant Lepisiota semenovi (Hymenoptera, Formicidae) from Turkmenistan]. Kipiatkov VE; Lopatina EB Zh Evol Biokhim Fiziol; 2009; 45(2):191-6. PubMed ID: 19435261 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]