These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 12770256)
21. Endosymbionts (Buchnera) from the aphids Schizaphis graminum and Diuraphis noxia have different copy numbers of the plasmid containing the leucine biosynthetic genes. Thao ML; Baumann L; Baumann P; Moran NA Curr Microbiol; 1998 Apr; 36(4):238-40. PubMed ID: 9504992 [TBL] [Abstract][Full Text] [Related]
22. Survival and Feeding Rates of Four Aphid Species (Hemiptera: Aphididae) on Various Sucrose Concentrations in Diets. Puterka GJ; Nicholson SJ; Cooper WR J Econ Entomol; 2017 Aug; 110(4):1518-1524. PubMed ID: 28637212 [TBL] [Abstract][Full Text] [Related]
23. Niche construction and niche choice by aphids infesting wheat ears. Bühler A; Schweiger R Oecologia; 2024 Oct; 206(1-2):47-59. PubMed ID: 39227465 [TBL] [Abstract][Full Text] [Related]
24. The resistance and correlation analysis to three species of cereal aphids (Hemiptera: Aphididae) on 10 wheat varieties or lines. Hu XS; Keller MA; Liu XF; Hu ZQ; Zhao HY; Liu TX J Econ Entomol; 2013 Aug; 106(4):1894-901. PubMed ID: 24020308 [TBL] [Abstract][Full Text] [Related]
25. Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Cooper WR; Dillwith JW; Puterka GJ Environ Entomol; 2011 Feb; 40(1):151-6. PubMed ID: 22182624 [TBL] [Abstract][Full Text] [Related]
26. Ethylene production and peroxidase activity in aphid-infested barley. Argandoña VH; Chaman M; Cardemil L; Muñoz O; Zúñiga GE; Corcuera LJ J Chem Ecol; 2001 Jan; 27(1):53-68. PubMed ID: 11382067 [TBL] [Abstract][Full Text] [Related]
27. Free amino Acid composition of leaf exudates and Phloem sap : a comparative study in oats and barley. Weibull J; Ronquist F; Brishammar S Plant Physiol; 1990 Jan; 92(1):222-6. PubMed ID: 16667250 [TBL] [Abstract][Full Text] [Related]
28. Resistance to Russian wheat aphid biotype 2 in CIMMYT synthetic hexaploid wheat lines. Sotelo P; Starkey S; Voothuluru P; Wilde GE; Smith CM J Econ Entomol; 2009 Jun; 102(3):1255-61. PubMed ID: 19610446 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of tetraploid switchgrass (Poales: Poaceae) populations for host suitability and differential resistance to four cereal aphids. Koch KG; Fithian R; Heng-Moss TM; Bradshaw JD; Sarath G; Spilker C J Econ Entomol; 2014 Feb; 107(1):424-31. PubMed ID: 24665729 [TBL] [Abstract][Full Text] [Related]
30. Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. Heng-Moss TM; Ni X; Macedo T; Markwell JP; Baxendale FP; Quisenberry SS; Tolmay V J Econ Entomol; 2003 Apr; 96(2):475-81. PubMed ID: 14994818 [TBL] [Abstract][Full Text] [Related]
31. Aphid infestation leads to plant part-specific changes in phloem sap chemistry, which may indicate niche construction. Jakobs R; Schweiger R; Müller C New Phytol; 2019 Jan; 221(1):503-514. PubMed ID: 30040116 [TBL] [Abstract][Full Text] [Related]
32. Behavioral evidence for local reduction of aphid-induced resistance. Prado E; Tjallingii WF J Insect Sci; 2007; 7():1-8. PubMed ID: 20345289 [TBL] [Abstract][Full Text] [Related]
33. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants. Sinha DK; Chandran P; Timm AE; Aguirre-Rojas L; Smith CM PLoS One; 2016; 11(1):e0146809. PubMed ID: 26815857 [TBL] [Abstract][Full Text] [Related]
34. Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or beta-1,3-glucanase transcript abundance. Saheed SA; Cierlik I; Larsson KA; Delp G; Bradley G; Jonsson LM; Botha CE Physiol Plant; 2009 Feb; 135(2):150-61. PubMed ID: 19055542 [TBL] [Abstract][Full Text] [Related]
35. Efficacy of Imidacloprid Seed Treatments against Four Wheat Aphids under Laboratory and Field Conditions. Zhang Z; Li Y; Li X; Zhu X; Zhang Y Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36678951 [TBL] [Abstract][Full Text] [Related]
36. Effects of host plants on aphid feeding behavior, fitness, and Buchnera aphidicola titer. Liu S; Liu XB; Zhang TT; Bai SX; He KL; Zhang YJ; Francis F; Wang ZY Insect Sci; 2024 Aug; ():. PubMed ID: 39114883 [TBL] [Abstract][Full Text] [Related]
37. Testing the fecundity advantage hypothesis with Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum (Hemiptera: Aphididae) feeding on ten wheat accessions. Hu XS; Liu XF; Thieme T; Zhang GS; Liu TX; Zhao HY Sci Rep; 2015 Dec; 5():18549. PubMed ID: 26680508 [TBL] [Abstract][Full Text] [Related]
38. Genetic characterization of plasmids containing genes encoding enzymes of leucine biosynthesis in endosymbionts (Buchnera) of aphids. Baumann L; Baumann P; Moran NA; Sandström J; Thao ML J Mol Evol; 1999 Jan; 48(1):77-85. PubMed ID: 9873079 [TBL] [Abstract][Full Text] [Related]
39. Location, location, location: Feeding site affects aphid performance by altering access and quality of nutrients. Nalam VJ; Han J; Pitt WJ; Acharya SR; Nachappa P PLoS One; 2021; 16(2):e0245380. PubMed ID: 33539358 [TBL] [Abstract][Full Text] [Related]
40. Feeding by Melanaphis sacchari (Hemiptera: Aphididae) Facilitates Use of Sorghum by Rhopalosiphum padi (Hemiptera: Aphididae), but Reciprocal Effects Are Negative. Michaud JP; Zhang Y; Bain C Environ Entomol; 2017 Apr; 46(2):268-273. PubMed ID: 28073905 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]