These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 12770419)

  • 1. Effects of photoperiod and aging on locomotor activity rhythms in the onion fly, Delia antiqua.
    Arai T; Watari Y
    J Insect Physiol; 1997 Jun; 43(6):567-576. PubMed ID: 12770419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua.
    Watari Y
    J Insect Physiol; 2002 Jan; 48(1):83-89. PubMed ID: 12770135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the effect of thermoperiod.
    Watari Y
    J Insect Physiol; 2002 Sep; 48(9):881-886. PubMed ID: 12770050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity.
    Watari Y
    J Insect Physiol; 2005 Jan; 51(1):11-6. PubMed ID: 15686641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina.
    Thakurdas P; Sharma S; Singh B; Vanlalhriatpuia K; Joshi D
    Chronobiol Int; 2011 May; 28(5):390-6. PubMed ID: 21721854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interacting effect of thermoperiod and photoperiod on the eclosion rhythm in the onion fly, Delia antiqua supports the two-oscillator model.
    Watari Y; Tanaka K
    J Insect Physiol; 2010 Sep; 56(9):1192-7. PubMed ID: 20346949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult eclosion timing of the onion fly, Delia antiqua, in response to daily cycles of temperature at different soil depths.
    Tanaka K; Watari Y
    Naturwissenschaften; 2003 Feb; 90(2):76-9. PubMed ID: 12590302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica.
    Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(5):821-34. PubMed ID: 17994339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging alters properties of the circadian pacemaker controlling the locomotor activity rhythm in males of Drosophila nasuta.
    Joshi D; Barnabas R; Martin ER; Parihar V; Kanojiya M
    Chronobiol Int; 1999 Nov; 16(6):751-8. PubMed ID: 10584175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina.
    Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D
    Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana.
    Sharma S; Thakurdas P; Sinam B; Joshi D
    Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The daily rhythms of melatonin and free fatty acids in goats under varying photoperiods and constant darkness.
    Alila-Johansson A; Eriksson L; Soveri T; Laakso ML
    Chronobiol Int; 2006; 23(3):565-81. PubMed ID: 16753942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nocturnal illumination dimmer than starlight altered the circadian rhythm of adult locomotor activity of a fruit fly.
    Thakurdas P; Sharma S; Sinam B; Chib M; Joshi D
    Chronobiol Int; 2010 Jan; 27(1):83-94. PubMed ID: 20205559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic consequences of timed feeding in mice.
    Shamsi NA; Salkeld MD; Rattanatray L; Voultsios A; Varcoe TJ; Boden MJ; Kennaway DJ
    Physiol Behav; 2014 Apr; 128():188-201. PubMed ID: 24534172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature cycle amplitude alters the adult eclosion time and expression pattern of the circadian clock gene period in the onion fly.
    Miyazaki Y; Watari Y; Tanaka K; Goto SG
    J Insect Physiol; 2016 Mar; 86():54-9. PubMed ID: 26776097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.