These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 12770770)
1. Recognition of cell surface acceptors by two human alpha-2,6-sialyltransferases produced in CHO cells. Donadio S; Dubois C; Fichant G; Roybon L; Guillemot JC; Breton C; Ronin C Biochimie; 2003; 85(3-4):311-21. PubMed ID: 12770770 [TBL] [Abstract][Full Text] [Related]
2. Exploring the acceptor substrate recognition of the human beta-galactoside alpha 2,6-sialyltransferase. Legaigneur P; Breton C; El Battari A; Guillemot JC; Auge C; Malissard M; Berger EG; Ronin C J Biol Chem; 2001 Jun; 276(24):21608-17. PubMed ID: 11279145 [TBL] [Abstract][Full Text] [Related]
3. Linkage-specific action of endogenous sialic acid O-acetyltransferase in Chinese hamster ovary cells. Shi WX; Chammas R; Varki A J Biol Chem; 1996 Jun; 271(25):15130-8. PubMed ID: 8662976 [TBL] [Abstract][Full Text] [Related]
4. The signal anchor and stem regions of the beta-galactoside alpha 2,6-sialyltransferase may each act to localize the enzyme to the Golgi apparatus. Colley KJ; Lee EU; Paulson JC J Biol Chem; 1992 Apr; 267(11):7784-93. PubMed ID: 1560012 [TBL] [Abstract][Full Text] [Related]
5. Specific sequences in the signal anchor of the beta-galactoside alpha-2,6-sialyltransferase are not essential for Golgi localization. Membrane flanking sequences may specify Golgi retention. Dahdal RY; Colley KJ J Biol Chem; 1993 Dec; 268(35):26310-9. PubMed ID: 8253753 [TBL] [Abstract][Full Text] [Related]
6. Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, ST6Gal II. Krzewinski-Recchi MA; Julien S; Juliant S; Teintenier-Lelièvre M; Samyn-Petit B; Montiel MD; Mir AM; Cerutti M; Harduin-Lepers A; Delannoy P Eur J Biochem; 2003 Mar; 270(5):950-61. PubMed ID: 12603328 [TBL] [Abstract][Full Text] [Related]
7. The two rat alpha 2,6-sialyltransferase (ST6Gal I) isoforms: evaluation of catalytic activity and intra-Golgi localization. Chen TL; Chen C; Bergeron NQ; Close BE; Bohrer TJ; Vertel BM; Colley KJ Glycobiology; 2003 Feb; 13(2):109-17. PubMed ID: 12626411 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning of a developmentally regulated N-acetylgalactosamine alpha2,6-sialyltransferase specific for sialylated glycoconjugates. Sjoberg ER; Kitagawa H; Glushka J; van Halbeek H; Paulson JC J Biol Chem; 1996 Mar; 271(13):7450-9. PubMed ID: 8631773 [TBL] [Abstract][Full Text] [Related]
10. Analysis of kidney mRNAs expressed from the rat beta-galactoside alpha 2,6-sialyltransferase gene. O'Hanlon TP; Lau JT Glycobiology; 1992 Jun; 2(3):257-66. PubMed ID: 1498423 [TBL] [Abstract][Full Text] [Related]
11. Two soluble glycosyltransferases glycosylate less efficiently in vivo than their membrane bound counterparts. Zhu G; Allende ML; Jaskiewicz E; Qian R; Darling DS; Worth CA; Colley KJ; Young WW Glycobiology; 1998 Aug; 8(8):831-40. PubMed ID: 9639544 [TBL] [Abstract][Full Text] [Related]
12. High-quality production of human α-2,6-sialyltransferase in Pichia pastoris requires control over N-terminal truncations by host-inherent protease activities. Ribitsch D; Zitzenbacher S; Augustin P; Schmölzer K; Czabany T; Luley-Goedl C; Thomann M; Jung C; Sobek H; Müller R; Nidetzky B; Schwab H Microb Cell Fact; 2014 Sep; 13(1):138. PubMed ID: 25365915 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the enzymatic properties of mouse beta-galactoside alpha2,6-sialyltransferases, ST6Gal I and II. Takashima S; Tsuji S; Tsujimoto M J Biochem; 2003 Aug; 134(2):287-96. PubMed ID: 12966079 [TBL] [Abstract][Full Text] [Related]
14. The second bovine beta-galactoside-alpha2,6-sialyltransferase (ST6Gal II): genomic organization and stimulation of its in vitro expression by IL-6 in bovine mammary epithelial cells. Laporte B; Gonzalez-Hilarion S; Maftah A; Petit JM Glycobiology; 2009 Oct; 19(10):1082-93. PubMed ID: 19617256 [TBL] [Abstract][Full Text] [Related]
15. Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond. Datta AK; Chammas R; Paulson JC J Biol Chem; 2001 May; 276(18):15200-7. PubMed ID: 11278697 [TBL] [Abstract][Full Text] [Related]
16. Location and mechanism of alpha 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing. Qian R; Chen C; Colley KJ J Biol Chem; 2001 Aug; 276(31):28641-9. PubMed ID: 11356854 [TBL] [Abstract][Full Text] [Related]
17. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Fukuta K; Yokomatsu T; Abe R; Asanagi M; Makino T Glycoconj J; 2000 Dec; 17(12):895-904. PubMed ID: 11511814 [TBL] [Abstract][Full Text] [Related]
18. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Harduin-Lepers A; Mollicone R; Delannoy P; Oriol R Glycobiology; 2005 Aug; 15(8):805-17. PubMed ID: 15843597 [TBL] [Abstract][Full Text] [Related]
19. Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. Datta AK; Sinha A; Paulson JC J Biol Chem; 1998 Apr; 273(16):9608-14. PubMed ID: 9545292 [TBL] [Abstract][Full Text] [Related]
20. Effects of amino acid substitutions in the sialylmotifs on molecular expression and enzymatic activities of α2,8-sialyltransferases ST8Sia-I and ST8Sia-VI. Takashima S; Matsumoto T; Tsujimoto M; Tsuji S Glycobiology; 2013 May; 23(5):603-12. PubMed ID: 23315426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]