BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12770770)

  • 21. Transcriptional regulation of human beta-galactoside alpha2, 6-sialyltransferase (hST6Gal I) gene during differentiation of the HL-60 cell line.
    Taniguchi A; Hasegawa Y; Higai K; Matsumoto K
    Glycobiology; 2000 Jun; 10(6):623-8. PubMed ID: 10814704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural analysis of the alpha-2,3-sialyltransferase Cst-I from Campylobacter jejuni in apo and substrate-analogue bound forms.
    Chiu CP; Lairson LL; Gilbert M; Wakarchuk WW; Withers SG; Strynadka NC
    Biochemistry; 2007 Jun; 46(24):7196-204. PubMed ID: 17518445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between ST6Gal I Golgi retention and its cleavage-secretion.
    Kitazume-Kawaguchi S; Dohmae N; Takio K; Tsuji S; Colley KJ
    Glycobiology; 1999 Dec; 9(12):1397-406. PubMed ID: 10561465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The 17-residue transmembrane domain of beta-galactoside alpha 2,6-sialyltransferase is sufficient for Golgi retention.
    Wong SH; Low SH; Hong W
    J Cell Biol; 1992 Apr; 117(2):245-58. PubMed ID: 1560026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Minimal structural and glycosylation requirements for ST6Gal I activity and trafficking.
    Chen C; Colley KJ
    Glycobiology; 2000 May; 10(5):531-83. PubMed ID: 10764842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and application of active human α2,6-sialyltransferases ST6GalNAc V and ST6GalNAc VI recombined in Escherichia coli.
    Pei C; Peng X; Wu Y; Jiao R; Li T; Jiao S; Zhou L; Li J; Du Y; Qian EW
    Enzyme Microb Technol; 2024 Jun; 177():110426. PubMed ID: 38503081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Arabidopsis thaliana putative sialyltransferase resides in the Golgi apparatus but lacks the ability to transfer sialic acid.
    Daskalova SM; Pah AR; Baluch DP; Lopez LC
    Plant Biol (Stuttg); 2009 May; 11(3):284-99. PubMed ID: 19470101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of sialyltransferase mutants using surface plasmon resonance.
    Laroy W; Ameloot P; Contreras R
    Glycobiology; 2001 Mar; 11(3):175-82. PubMed ID: 11320056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of sialylation on humanized IgG-like bispecific antibody by overexpression of α2,6-sialyltransferase derived from Chinese hamster ovary cells.
    Onitsuka M; Kim WD; Ozaki H; Kawaguchi A; Honda K; Kajiura H; Fujiyama K; Asano R; Kumagai I; Ohtake H; Omasa T
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):69-80. PubMed ID: 22205442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans.
    Kuhn B; Benz J; Greif M; Engel AM; Sobek H; Rudolph MG
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1826-38. PubMed ID: 23999306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational characterisation of the interactions between human ST6Gal I and transition-state analogue inhibitors: insights for inhibitor design.
    Montgomery A; Szabo R; Skropeta D; Yu H
    J Mol Recognit; 2016 May; 29(5):210-22. PubMed ID: 26669681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation.
    Meng L; Forouhar F; Thieker D; Gao Z; Ramiah A; Moniz H; Xiang Y; Seetharaman J; Milaninia S; Su M; Bridger R; Veillon L; Azadi P; Kornhaber G; Wells L; Montelione GT; Woods RJ; Tong L; Moremen KW
    J Biol Chem; 2013 Nov; 288(48):34680-98. PubMed ID: 24155237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization of Drosophila sialyltransferase.
    Koles K; Irvine KD; Panin VM
    J Biol Chem; 2004 Feb; 279(6):4346-57. PubMed ID: 14612445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins.
    Bragonzi A; Distefano G; Buckberry LD; Acerbis G; Foglieni C; Lamotte D; Campi G; Marc A; Soria MR; Jenkins N; Monaco L
    Biochim Biophys Acta; 2000 May; 1474(3):273-82. PubMed ID: 10779678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer.
    Sewell R; Bäckström M; Dalziel M; Gschmeissner S; Karlsson H; Noll T; Gätgens J; Clausen H; Hansson GC; Burchell J; Taylor-Papadimitriou J
    J Biol Chem; 2006 Feb; 281(6):3586-94. PubMed ID: 16319059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of mouse sialyltransferase genes: their evolution and diversity.
    Takashima S
    Biosci Biotechnol Biochem; 2008 May; 72(5):1155-67. PubMed ID: 18460788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic engineering of alpha 2,6-sialyltransferase in recombinant CHO cells.
    Jenkins N; Buckberry L; Marc A; Monaco L
    Biochem Soc Trans; 1998 May; 26(2):S115. PubMed ID: 9649790
    [No Abstract]   [Full Text] [Related]  

  • 38. Differential recognition of glycoprotein acceptors by terminal glycosyltransferases.
    Yeh J; Cummings RD
    Glycobiology; 1997 Mar; 7(2):241-51. PubMed ID: 9134431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the specificity of sialyltransferases toward mucin core 2, globo, and related structures. identification of the sialylation sequence and the effects of sulfate, fucose, methyl, and fluoro substituents of the carbohydrate chain in the biosynthesis of selectin and siglec ligands, and novel sialylation by cloned alpha2,3(O)sialyltransferase.
    Chandrasekaran EV; Xue J; Xia J; Chawda R; Piskorz C; Locke RD; Neelamegham S; Matta KL
    Biochemistry; 2005 Nov; 44(47):15619-35. PubMed ID: 16300412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective exo-enzymatic labeling of N-glycans on the surface of living cells by recombinant ST6Gal I.
    Mbua NE; Li X; Flanagan-Steet HR; Meng L; Aoki K; Moremen KW; Wolfert MA; Steet R; Boons GJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(49):13012-5. PubMed ID: 24129959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.