These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12770863)

  • 21. Connective tissue as an integral system: role of cell-cell and cell-matrix interactions.
    Shekhter AB
    Connect Tissue Res; 1986; 15(1-2):23-31. PubMed ID: 2944698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior.
    Chandran PL; Barocas VH
    J Biomech Eng; 2006 Apr; 128(2):259-70. PubMed ID: 16524339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ionised/non-ionised dual porosity model of intervertebral disc tissue.
    Huyghe JM; Houben GB; Drost MR; van Donkelaar CC
    Biomech Model Mechanobiol; 2003 Aug; 2(1):3-19. PubMed ID: 14586814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling dermal granulation tissue with the linear fibroblast-populated collagen matrix: a comparison with the round matrix model.
    Eichler MJ; Carlson MA
    J Dermatol Sci; 2006 Feb; 41(2):97-108. PubMed ID: 16226016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues.
    Fortier GM; Gauvin R; Proulx M; Vallée M; Fradette J
    J Tissue Eng Regen Med; 2013 Apr; 7(4):292-301. PubMed ID: 22162315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces.
    Suki B; Ito S; Stamenovic D; Lutchen KR; Ingenito EP
    J Appl Physiol (1985); 2005 May; 98(5):1892-9. PubMed ID: 15829722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anisotropic collagen fibrillogenesis within microfabricated scaffolds: implications for biomimetic tissue engineering.
    Jean A; Engelmayr GC
    Adv Healthc Mater; 2012 Jan; 1(1):112-6. PubMed ID: 23184695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures.
    Robinson TF; Cohen-Gould L; Factor SM
    Lab Invest; 1983 Oct; 49(4):482-98. PubMed ID: 6684712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips.
    Holmes DF; Graham HK; Kadler KE
    J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of nanostructured composite collagen--chitosan matrices for tissue engineering.
    Tan W; Krishnaraj R; Desai TA
    Tissue Eng; 2001 Apr; 7(2):203-10. PubMed ID: 11304455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Echinoderm collagen fibrils grow by surface-nucleation-and-propagation from both centers and ends.
    Trotter JA; Kadler KE; Holmes DF
    J Mol Biol; 2000 Jul; 300(3):531-40. PubMed ID: 10884349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational modeling of type I collagen fibers to determine the extracellular matrix structure of connective tissues.
    Israelowitz M; Rizvi SW; Kramer J; von Schroeder HP
    Protein Eng Des Sel; 2005 Jul; 18(7):329-35. PubMed ID: 15980018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development.
    Birk DE; Nurminskaya MV; Zycband EI
    Dev Dyn; 1995 Mar; 202(3):229-43. PubMed ID: 7780173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wound closure: evidence of cooperation between fibroblasts and collagen matrix.
    Ehrlich HP
    Eye (Lond); 1988; 2 ( Pt 2)():149-57. PubMed ID: 3058521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular interactions of exogenous chemical agents with collagen--implications for tissue optical clearing.
    Yeh AT; Hirshburg J
    J Biomed Opt; 2006; 11(1):014003. PubMed ID: 16526880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical mechanics of connective tissues: integrating insights from nano to macroscopic studies.
    Gohl KL; Listrat A; Béchet D
    J Biomed Nanotechnol; 2014 Oct; 10(10):2464-507. PubMed ID: 25992406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibroblast matrix gene expression and connective tissue remodeling: role of endothelin-1.
    Shi-Wen X; Denton CP; Dashwood MR; Holmes AM; Bou-Gharios G; Pearson JD; Black CM; Abraham DJ
    J Invest Dermatol; 2001 Mar; 116(3):417-25. PubMed ID: 11231316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.