BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 12770873)

  • 1. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.
    Corry B; Kuyucak S; Chung SH
    Biophys J; 2003 Jun; 84(6):3594-606. PubMed ID: 12770869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
    Coalson RD; Kurnikova MG
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):81-93. PubMed ID: 15816174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
    Edwards S; Corry B; Kuyucak S; Chung SH
    Biophys J; 2002 Sep; 83(3):1348-60. PubMed ID: 12202360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
    Corry B; Chung SH
    Eur Biophys J; 2005 May; 34(3):208-16. PubMed ID: 15536565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation.
    Siva K; Elber R
    Proteins; 2003 Jan; 50(1):63-80. PubMed ID: 12471600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.
    Kurnikova MG; Coalson RD; Graf P; Nitzan A
    Biophys J; 1999 Feb; 76(2):642-56. PubMed ID: 9929470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeation in ion channels: the interplay of structure and theory.
    Miloshevsky GV; Jordan PC
    Trends Neurosci; 2004 Jun; 27(6):308-14. PubMed ID: 15165734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.
    Cárdenas AE; Coalson RD; Kurnikova MG
    Biophys J; 2000 Jul; 79(1):80-93. PubMed ID: 10866939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields.
    Allen TW; Andersen OS; Roux B
    Biophys J; 2006 May; 90(10):3447-68. PubMed ID: 16500984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poisson-Boltzmann-Nernst-Planck model.
    Zheng Q; Wei GW
    J Chem Phys; 2011 May; 134(19):194101. PubMed ID: 21599038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of K+ permeability through Gramicidin A by forward-reverse steered molecular dynamics.
    De Fabritiis G; Coveney PV; Villà-Freixa J
    Proteins; 2008 Oct; 73(1):185-94. PubMed ID: 18412256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents.
    Thompson N; Thompson G; Cole CD; Cotten M; Cross TA; Busath DD
    Biophys J; 2001 Sep; 81(3):1245-54. PubMed ID: 11509341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels.
    Allen TW; Andersen OS; Roux B
    Biophys Chem; 2006 Dec; 124(3):251-67. PubMed ID: 16781050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
    Chen D
    Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
    Nonner W; Eisenberg B
    Biophys J; 1998 Sep; 75(3):1287-305. PubMed ID: 9726931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.