BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12770900)

  • 1. Protein self-association in solution: the bovine pancreatic trypsin inhibitor decamer.
    Gottschalk M; Venu K; Halle B
    Biophys J; 2003 Jun; 84(6):3941-58. PubMed ID: 12770900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The BPTI decamer observed in acidic pH crystal forms pre-exists as a stable species in solution.
    Hamiaux C; Pérez J; Prangé T; Veesler S; Riès-Kautt M; Vachette P
    J Mol Biol; 2000 Mar; 297(3):697-712. PubMed ID: 10731422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decamers observed in the crystals of bovine pancreatic trypsin inhibitor.
    Lubkowski J; Wlodawer A
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):335-7. PubMed ID: 10089443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pulsed-field gradient NMR study of bovine pancreatic trypsin inhibitor self-association.
    Ilyina E; Roongta V; Pan H; Woodward C; Mayo KH
    Biochemistry; 1997 Mar; 36(11):3383-8. PubMed ID: 9116018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution structure of bovine pancreatic trypsin inhibitor with altered binding loop sequence.
    Czapinska H; Otlewski J; Krzywda S; Sheldrick GM; Jaskólski M
    J Mol Biol; 2000 Feb; 295(5):1237-49. PubMed ID: 10653700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen exchange rates in proteins from water (1)H transverse magnetic relaxation.
    Denisov VP; Halle B
    J Am Chem Soc; 2002 Sep; 124(35):10264-5. PubMed ID: 12197713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein self-association induced by macromolecular crowding: a quantitative analysis by magnetic relaxation dispersion.
    Snoussi K; Halle B
    Biophys J; 2005 Apr; 88(4):2855-66. PubMed ID: 15665132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of native and [homoserine lactone-52]-52,53-seco-bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor) to porcine pancreatic beta-kallikrein-B and bovine alpha-chymotrypsin: thermodynamic study.
    Oddone R; Barra D; Amiconi G; Ascenzi P; Tarricone C; Bolognesi M; Bortolotti F; Menegatti E
    J Mol Recognit; 1994 Mar; 7(1):39-46. PubMed ID: 7527234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of bovine pancreatic trypsin inhibitor (BPTI) variants in which almost half the residues are alanine.
    Kuroda Y; Kim PS
    J Mol Biol; 2000 May; 298(3):493-501. PubMed ID: 10772865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of single-disulfide variants of bovine pancreatic trypsin inhibitor (BPTI) as probed by their binding to bovine beta-trypsin.
    Krokoszynska I; Dadlez M; Otlewski J
    J Mol Biol; 1998 Jan; 275(3):503-13. PubMed ID: 9466927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The decameric structure of bovine pancreatic trypsin inhibitor (BPTI) crystallized from thiocyanate at 2.7 A resolution.
    Hamiaux C; Prangé T; Riès-Kautt M; Ducruix A; Lafont S; Astier JP; Veesler S
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):103-13. PubMed ID: 10089400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitutions at the P(1) position in BPTI strongly affect the association energy with serine proteinases.
    Grzesiak A; Helland R; Smalås AO; Krowarsch D; Dadlez M; Otlewski J
    J Mol Biol; 2000 Aug; 301(1):205-17. PubMed ID: 10926503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence on structure and dynamics of Bovine Pancreatic Trypsin Inhibitor (BPTI): a neutron scattering study.
    Appavou MS; Gibrat G; Bellissent-Funel MC
    Biochim Biophys Acta; 2009 Oct; 1794(10):1398-406. PubMed ID: 19464393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring bovine pancreatic trypsin inhibitor phase transitions.
    Grouazel S; Bonneté F; Astier JP; Ferté N; Perez J; Veesler S
    J Phys Chem B; 2006 Oct; 110(39):19664-70. PubMed ID: 17004835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced BPTI is collapsed. A pulsed field gradient NMR study of unfolded and partially folded bovine pancreatic trypsin inhibitor.
    Pan H; Barany G; Woodward C
    Protein Sci; 1997 Sep; 6(9):1985-92. PubMed ID: 9300498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a molecular switch that selects between two crystals forms of bovine pancreatic trypsin inhibitor.
    Gallagher WH; Croker KM
    Protein Sci; 1994 Sep; 3(9):1602-4. PubMed ID: 7530544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of complexes formed by a crustacean and a vertebrate trypsin with bovine pancreatic trypsin inhibitor - the key to achieving extreme stability?
    Molnár T; Vörös J; Szeder B; Takáts K; Kardos J; Katona G; Gráf L
    FEBS J; 2013 Nov; 280(22):5750-63. PubMed ID: 24034223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The solution structure of bovine pancreatic trypsin inhibitor at high pressure.
    Williamson MP; Akasaka K; Refaee M
    Protein Sci; 2003 Sep; 12(9):1971-9. PubMed ID: 12930996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of five bovine chymotrypsin complexes with P1 BPTI variants.
    Czapinska H; Helland R; Smalås AO; Otlewski J
    J Mol Biol; 2004 Dec; 344(4):1005-20. PubMed ID: 15544809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of anionic and cationic trypsinogens: the anionic activation domain is more flexible in solution and differs in its mode of BPTI binding in the crystal structure.
    Pasternak A; Ringe D; Hedstrom L
    Protein Sci; 1999 Jan; 8(1):253-8. PubMed ID: 10210204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.