BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 12770904)

  • 1. FRET or no FRET: a quantitative comparison.
    Berney C; Danuser G
    Biophys J; 2003 Jun; 84(6):3992-4010. PubMed ID: 12770904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay.
    Hu S; Yang H; Cai R; Liu Z; Yang X
    Talanta; 2009 Dec; 80(2):454-8. PubMed ID: 19836503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous non-competitive bioaffinity assay based on fluorescence resonance energy transfer.
    Kokko T; Kokko L; Soukka T; Lövgren T
    Anal Chim Acta; 2007 Feb; 585(1):120-5. PubMed ID: 17386655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fanciful FRET.
    Vogel SS; Thaler C; Koushik SV
    Sci STKE; 2006 Apr; 2006(331):re2. PubMed ID: 16622184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor.
    Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M
    Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength in numbers: effects of acceptor abundance on FRET efficiency.
    Fábián ÁI; Rente T; Szöllosi J; Mátyus L; Jenei A
    Chemphyschem; 2010 Dec; 11(17):3713-21. PubMed ID: 20936620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved temporal resolution and linked hidden Markov modeling for switchable single-molecule FRET.
    Uphoff S; Gryte K; Evans G; Kapanidis AN
    Chemphyschem; 2011 Feb; 12(3):571-9. PubMed ID: 21280168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A.
    Mekler VM; Averbakh AZ; Sudarikov AB; Kharitonova OV
    J Photochem Photobiol B; 1997 Oct; 40(3):278-87. PubMed ID: 9372617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-evaluation of biotin-streptavidin conjugation in Förster resonance energy transfer applications.
    Saremi B; Wei MY; Liu Y; Cheng B; Yuan B
    J Biomed Opt; 2014 Aug; 19(8):085008. PubMed ID: 25162908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescence resonance energy transfer-based binding assay for characterizing kinase inhibitors: important role for C-terminal biotin tagging of the kinase.
    Kwan J; Ling A; Papp E; Shaw D; Bradshaw JM
    Anal Biochem; 2009 Dec; 395(2):256-62. PubMed ID: 19716360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores.
    Hevekerl H; Spielmann T; Chmyrov A; Widengren J
    J Phys Chem B; 2011 Nov; 115(45):13360-70. PubMed ID: 21928769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy.
    Kenworthy AK
    Methods; 2001 Jul; 24(3):289-96. PubMed ID: 11403577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using structure-function constraints in FRET studies of large macromolecular complexes.
    Bujalowski WM; Jezewska MJ
    Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General and reliable quantitative measurement of fluorescence resonance energy transfer using three fluorescence channels.
    Xie F; Zhu J; Deng C; Huang G; Mitchelson K; Cheng J
    Analyst; 2012 Feb; 137(4):1013-9. PubMed ID: 22234659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.