BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 12771147)

  • 1. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.
    Bieganowski P; Pace HC; Brenner C
    J Biol Chem; 2003 Aug; 278(35):33049-55. PubMed ID: 12771147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad.
    Bieganowski P; Brenner C
    J Biol Chem; 2003 Aug; 278(35):33056-9. PubMed ID: 12777395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste.
    Wojcik M; Seidle HF; Bieganowski P; Brenner C
    J Biol Chem; 2006 Nov; 281(44):33395-402. PubMed ID: 16954203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain.
    Bellinzoni M; Buroni S; Pasca MR; Guglierame P; Arcesi F; De Rossi E; Riccardi G
    Res Microbiol; 2005 Mar; 156(2):173-7. PubMed ID: 15748981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ancestral glutamine-dependent NAD(+) synthetase revealed by poor kinetic synergism.
    Resto M; Yaffe J; Gerratana B
    Biochim Biophys Acta; 2009 Nov; 1794(11):1648-53. PubMed ID: 19647806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency.
    Hara N; Yamada K; Terashima M; Osago H; Shimoyama M; Tsuchiya M
    J Biol Chem; 2003 Mar; 278(13):10914-21. PubMed ID: 12547821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae QNS1 codes for NAD(+) synthetase that is functionally conserved in mammals.
    Suda Y; Tachikawa H; Yokota A; Nakanishi H; Yamashita N; Miura Y; Takahashi N
    Yeast; 2003 Aug; 20(11):995-1005. PubMed ID: 12898714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine versus ammonia utilization in the NAD synthetase family.
    De Ingeniis J; Kazanov MD; Shatalin K; Gelfand MS; Osterman AL; Sorci L
    PLoS One; 2012; 7(6):e39115. PubMed ID: 22720044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism for acivicin inactivation of triad glutamine amidotransferases.
    Chittur SV; Klem TJ; Shafer CM; Davisson VJ
    Biochemistry; 2001 Jan; 40(4):876-87. PubMed ID: 11170408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of active site coupling in glutamine-dependent NAD(+) synthetase.
    LaRonde-LeBlanc N; Resto M; Gerratana B
    Nat Struct Mol Biol; 2009 Apr; 16(4):421-9. PubMed ID: 19270703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide sequence of yeast gene CP A1 encoding the small subunit of arginine-pathway carbamoyl-phosphate synthetase. Homology of the deduced amino acid sequence to other glutamine amidotransferases.
    Werner M; Feller A; Piérard A
    Eur J Biochem; 1985 Jan; 146(2):371-81. PubMed ID: 3881260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different ways to transport ammonia in human and Mycobacterium tuberculosis NAD
    Chuenchor W; Doukov TI; Chang KT; Resto M; Yun CS; Gerratana B
    Nat Commun; 2020 Jan; 11(1):16. PubMed ID: 31911602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and structural features of dimeric glutamine-dependent bacterial NAD
    Santos ARS; Gerhardt ECM; Moure VR; Pedrosa FO; Souza EM; Diamanti R; Högbom M; Huergo LF
    J Biol Chem; 2018 May; 293(19):7397-7407. PubMed ID: 29581233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes in ammonia-channeling glutamine amidotransferases.
    Mouilleron S; Golinelli-Pimpaneau B
    Curr Opin Struct Biol; 2007 Dec; 17(6):653-64. PubMed ID: 17951049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis uncoupling in a glutamine amidotransferase bienzyme by unblocking the glutaminase active site.
    List F; Vega MC; Razeto A; Häger MC; Sterner R; Wilmanns M
    Chem Biol; 2012 Dec; 19(12):1589-99. PubMed ID: 23261602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconstruction of the catalytic array within the amidotransferase subunit of carbamoyl phosphate synthetase.
    Huang X; Raushel FM
    Biochemistry; 1999 Nov; 38(48):15909-14. PubMed ID: 10625457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of glutamine amidotransferase from Thermotoga maritima.
    Korolev S; Skarina T; Evdokimova E; Beasley S; Edwards A; Joachimiak A; Savchenko A
    Proteins; 2002 Nov; 49(3):420-2. PubMed ID: 12360532
    [No Abstract]   [Full Text] [Related]  

  • 18. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad.
    Boehlein SK; Richards NG; Schuster SM
    J Biol Chem; 1994 Mar; 269(10):7450-7. PubMed ID: 7907328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity determining residues in ammonia- and glutamine-dependent carbamoyl phosphate synthetases.
    Saeed-Kothe A; Powers-Lee SG
    J Biol Chem; 2002 Mar; 277(9):7231-8. PubMed ID: 11756425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new arrangement of (beta/alpha)8 barrels in the synthase subunit of PLP synthase.
    Zhu J; Burgner JW; Harms E; Belitsky BR; Smith JL
    J Biol Chem; 2005 Jul; 280(30):27914-23. PubMed ID: 15911615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.