These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 12771174)

  • 1. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.
    Birch JM; Dickson WB; Dickinson MH
    J Exp Biol; 2004 Mar; 207(Pt 7):1063-72. PubMed ID: 14978049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
    Sane SP; Dickinson MH
    J Exp Biol; 2002 Apr; 205(Pt 8):1087-96. PubMed ID: 11919268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.
    Lehmann FO
    J Exp Biol; 2008 Jan; 211(Pt 2):224-33. PubMed ID: 18165250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional vortex wake structure of flapping wings in hovering flight.
    Cheng B; Roll J; Liu Y; Troolin DR; Deng X
    J R Soc Interface; 2014 Feb; 11(91):20130984. PubMed ID: 24335561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground effect on the aerodynamics of three-dimensional hovering wings.
    Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS
    Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
    Van Truong T; Le TQ; Park HC; Byun D
    Bioinspir Biomim; 2017 May; 12(3):036012. PubMed ID: 28513472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic investigation on shifted-back vertical stroke plane of flapping wing in forward flight.
    Han JS; Breitsamter C
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34767536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow development and leading edge vorticity in bristled insect wings.
    O'Callaghan F; Lehmann FO
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):219-229. PubMed ID: 36810678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic effects of deviating motion of flapping wings in hovering flight.
    Kim HY; Han JS; Han JH
    Bioinspir Biomim; 2019 Feb; 14(2):026006. PubMed ID: 30616233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.