BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 12771219)

  • 1. Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design.
    Gan HH; Pasquali S; Schlick T
    Nucleic Acids Res; 2003 Jun; 31(11):2926-43. PubMed ID: 12771219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candidates for novel RNA topologies.
    Kim N; Shiffeldrim N; Gan HH; Schlick T
    J Mol Biol; 2004 Aug; 341(5):1129-44. PubMed ID: 15321711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAG: RNA-As-Graphs database--concepts, analysis, and features.
    Gan HH; Fera D; Zorn J; Shiffeldrim N; Tang M; Laserson U; Kim N; Schlick T
    Bioinformatics; 2004 May; 20(8):1285-91. PubMed ID: 14962931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extended dual graph library and partitioning algorithm applicable to pseudoknotted RNA structures.
    Jain S; Saju S; Petingi L; Schlick T
    Methods; 2019 Jun; 162-163():74-84. PubMed ID: 30928508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAG: RNA-As-Graphs web resource.
    Fera D; Kim N; Shiffeldrim N; Zorn J; Laserson U; Gan HH; Schlick T
    BMC Bioinformatics; 2004 Jul; 5():88. PubMed ID: 15238163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs.
    Pasquali S; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(4):1384-98. PubMed ID: 15745998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Large RNA-Like Topologies by a Knowledge-Based Clustering Approach.
    Baba N; Elmetwaly S; Kim N; Schlick T
    J Mol Biol; 2016 Feb; 428(5 Pt A):811-821. PubMed ID: 26478223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adventures with RNA graphs.
    Schlick T
    Methods; 2018 Jul; 143():16-33. PubMed ID: 29621619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs.
    Laserson U; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(18):6057-69. PubMed ID: 16254081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAMotifContrast: a method to discover and visualize RNA structural motif subfamilies.
    Islam S; Rahaman MM; Zhang S
    Nucleic Acids Res; 2021 Jun; 49(11):e61. PubMed ID: 33693841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topological classification of RNA structures.
    Bon M; Vernizzi G; Orland H; Zee A
    J Mol Biol; 2008 Jun; 379(4):900-11. PubMed ID: 18485361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.
    Kim N; Zahran M; Schlick T
    Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Bioinformatics; 2005 Jun; 21(11):2611-7. PubMed ID: 15784748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAG-3D: a search tool for RNA 3D substructures.
    Zahran M; Sevim Bayrak C; Elmetwaly S; Schlick T
    Nucleic Acids Res; 2015 Oct; 43(19):9474-88. PubMed ID: 26304547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAG: an update to the RNA-As-Graphs resource.
    Izzo JA; Kim N; Elmetwaly S; Schlick T
    BMC Bioinformatics; 2011 May; 12():219. PubMed ID: 21627789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative analysis of secondary RNA structure using domination based parameters on trees.
    Haynes T; Knisley D; Seier E; Zou Y
    BMC Bioinformatics; 2006 Mar; 7():108. PubMed ID: 16515683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space.
    Duarte CM; Wadley LM; Pyle AM
    Nucleic Acids Res; 2003 Aug; 31(16):4755-61. PubMed ID: 12907716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and accurate search for non-coding RNA pseudoknot structures in genomes.
    Huang Z; Wu Y; Robertson J; Feng L; Malmberg RL; Cai L
    Bioinformatics; 2008 Oct; 24(20):2281-7. PubMed ID: 18687694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.