These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 12771219)

  • 41. The super-n-motifs model: a novel alignment-free approach for representing and comparing RNA secondary structures.
    Glouzon JS; Perreault JP; Wang S
    Bioinformatics; 2017 Apr; 33(8):1169-1178. PubMed ID: 28088762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accurate prediction of RNA nucleotide interactions with backbone k-tree model.
    Ding L; Xue X; LaMarca S; Mohebbi M; Samad A; Malmberg RL; Cai L
    Bioinformatics; 2015 Aug; 31(16):2660-7. PubMed ID: 25886978
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A structure-based flexible search method for motifs in RNA.
    Veksler-Lublinsky I; Ziv-Ukelson M; Barash D; Kedem K
    J Comput Biol; 2007 Sep; 14(7):908-26. PubMed ID: 17803370
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.
    Legendre A; Angel E; Tahi F
    BMC Bioinformatics; 2018 Jan; 19(1):13. PubMed ID: 29334887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies.
    Jain S; Tao Y; Schlick T
    J Struct Biol; 2020 Mar; 209(3):107438. PubMed ID: 31874236
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An algebraic language for RNA pseudoknots comparison.
    Quadrini M; Tesei L; Merelli E
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):161. PubMed ID: 30999864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational features of topologically classified RNA secondary structures.
    Chiu JK; Chen YP
    PLoS One; 2012; 7(7):e39907. PubMed ID: 22792195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graph-based sampling for approximating global helical topologies of RNA.
    Kim N; Laing C; Elmetwaly S; Jung S; Curuksu J; Schlick T
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4079-84. PubMed ID: 24591615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graph-theoretic approach to RNA modeling using comparative data.
    Cary RB; Stormo GD
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():75-80. PubMed ID: 7584469
    [TBL] [Abstract][Full Text] [Related]  

  • 50. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.
    Jain S; Schlick T
    J Mol Biol; 2017 Nov; 429(23):3587-3605. PubMed ID: 28988954
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Classification of non-coding RNA using graph representations of secondary structure.
    Karklin Y; Meraz RF; Holbrook SR
    Pac Symp Biocomput; 2005; ():4-15. PubMed ID: 15759609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques.
    Malhotra A; Tan RK; Harvey SC
    Biophys J; 1994 Jun; 66(6):1777-95. PubMed ID: 7521223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PSEUDOVIEWER2: Visualization of RNA pseudoknots of any type.
    Han K; Byun Y
    Nucleic Acids Res; 2003 Jul; 31(13):3432-40. PubMed ID: 12824341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.
    Kim N; Zheng Z; Elmetwaly S; Schlick T
    PLoS One; 2014; 9(9):e106074. PubMed ID: 25188578
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA-As-Graphs Motif Atlas-Dual Graph Library of RNA Modules and Viral Frameshifting-Element Applications.
    Zhu Q; Petingi L; Schlick T
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Informatic resources for identifying and annotating structural RNA motifs.
    George AD; Tenenbaum SA
    Mol Biotechnol; 2009 Feb; 41(2):180-93. PubMed ID: 18979204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient conversion of RNA pseudoknots to knot-free structures using a graphical model.
    Chiu JK; Chen YP
    IEEE Trans Biomed Eng; 2015 May; 62(5):1265-71. PubMed ID: 25474805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring Consensus RNA Substructural Patterns Using Subgraph Mining.
    Chen Q; Lan C; Chen B; Wang L; Li J; Zhang C
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1134-1146. PubMed ID: 28026781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15.
    Pei S; Slinger BL; Meyer MM
    BMC Bioinformatics; 2017 Jun; 18(1):298. PubMed ID: 28587636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel representation of RNA secondary structure based on element-contact graphs.
    Shu W; Bo X; Zheng Z; Wang S
    BMC Bioinformatics; 2008 Apr; 9():188. PubMed ID: 18402706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.