These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 1277148)
1. Covalent interaction of metabolites of the carcinogen trichloroethylene in rat hepatic microsomes. Van Duuren BL; Banerjee S Cancer Res; 1976 Jul; 36(7 PT 1):2419-22. PubMed ID: 1277148 [TBL] [Abstract][Full Text] [Related]
2. Covalent binding of the carcinogen trichloroethylene to hepatic microsomal proteins and to exogenous DNA in vitro. Banerjee S; Van Duuren BL Cancer Res; 1978 Mar; 38(3):776-80. PubMed ID: 626981 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450. Miller RE; Guengerich FP Cancer Res; 1983 Mar; 43(3):1145-52. PubMed ID: 6825087 [TBL] [Abstract][Full Text] [Related]
4. Activation of 14C-toluene to covalently binding metabolites by rat liver microsomes. Pathiratne A; Puyear RL; Brammer JD Drug Metab Dispos; 1986; 14(4):386-91. PubMed ID: 2873983 [TBL] [Abstract][Full Text] [Related]
5. Contrasting effects of 1,1,1-trichloroethane on [14C]vinyl chloride metabolism and activation in hepatic microsomes from phenobarbital- and isoniazid-treated rats. Baker MT; Ronnenberg WC Toxicol Appl Pharmacol; 1993 Mar; 119(1):17-22. PubMed ID: 8470120 [TBL] [Abstract][Full Text] [Related]
6. Hepatic and pulmonary microsomal metabolism of naphthalene to glutathione adducts: factors affecting the relative rates of conjugate formation. Buckpitt AR; Bahnson LS; Franklin RB J Pharmacol Exp Ther; 1984 Nov; 231(2):291-300. PubMed ID: 6491983 [TBL] [Abstract][Full Text] [Related]
7. Monooxygenase-mediated activation of chlorotrianisene (TACE) in covalent binding to rat hepatic microsomal proteins. Juedes MJ; Bulger WH; Kupfer D Drug Metab Dispos; 1987; 15(6):786-93. PubMed ID: 2893703 [TBL] [Abstract][Full Text] [Related]
8. Microsome-mediated covalent binding of 1,2-dichloroethane to lung microsomal protein and salmon sperm DNA. Banerjee S; Van Duuren BL; Oruambo FI Cancer Res; 1980 Jul; 40(7):2170-3. PubMed ID: 7388783 [TBL] [Abstract][Full Text] [Related]
9. Consideration of the target organ toxicity of trichloroethylene in terms of metabolite toxicity and pharmacokinetics. Davidson IW; Beliles RP Drug Metab Rev; 1991; 23(5-6):493-599. PubMed ID: 1802654 [TBL] [Abstract][Full Text] [Related]
10. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice. Beland FA Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702 [TBL] [Abstract][Full Text] [Related]
11. Microsomal metabolism and covalent binding of [3H/14C]-bromobenzene. Evidence for quinones as reactive metabolites. Narasimhan N; Weller PE; Buben JA; Wiley RA; Hanzlik RP Xenobiotica; 1988 May; 18(5):491-9. PubMed ID: 3400271 [TBL] [Abstract][Full Text] [Related]
12. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226 [TBL] [Abstract][Full Text] [Related]
13. Roles of 2-haloethylene oxides and 2-haloacetaldehydes derived from vinyl bromide and vinyl chloride in irreversible binding to protein and DNA. Guengerich FP; Mason PS; Stott WT; Fox TR; Watanabe PG Cancer Res; 1981 Nov; 41(11 Pt 1):4391-8. PubMed ID: 7030476 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Miller RE; Guengerich FP Biochemistry; 1982 Mar; 21(5):1090-7. PubMed ID: 7074051 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of the cytochrome P450 mechanism-based inhibitor N-benzyl-1-aminobenzotriazole to products that covalently bind with protein in guinea pig liver and lung microsomes: comparative study with 1-aminobenzotriazole. Woodcroft KJ; Webb CD; Yao M; Weedon AC; Bend JR Chem Res Toxicol; 1997 May; 10(5):589-99. PubMed ID: 9168258 [TBL] [Abstract][Full Text] [Related]
16. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450. Marinello AJ; Bansal SK; Paul B; Koser PL; Love J; Struck RF; Gurtoo HL Cancer Res; 1984 Oct; 44(10):4615-21. PubMed ID: 6380709 [TBL] [Abstract][Full Text] [Related]
17. Characterization of verlukast metabolites arising from an epoxide intermediate produced with hepatic microsomes from beta-naphthoflavone-treated rodents (P-4501A1). Nicoll-Griffith DA; Chauret N; Yergey JA; Trimble LA; Favreau L; Zamboni R; Grossman SJ; Drey J; Herold E Drug Metab Dispos; 1993; 21(5):861-7. PubMed ID: 7902249 [TBL] [Abstract][Full Text] [Related]
18. Bromobenzene epoxidation leading to binding on macromolecular protein sites. Lau SS; Zannoni VG J Pharmacol Exp Ther; 1981 Nov; 219(2):563-72. PubMed ID: 7288634 [TBL] [Abstract][Full Text] [Related]
19. Bioactivation of 8-methoxypsoralen and irreversible inactivation of cytochrome P-450 in mouse liver microsomes: modification by monoclonal antibodies, inhibition of drug metabolism and distribution of covalent adducts. Mays DC; Hilliard JB; Wong DD; Chambers MA; Park SS; Gelboin HV; Gerber N J Pharmacol Exp Ther; 1990 Aug; 254(2):720-31. PubMed ID: 2117068 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome P-450-dependent covalent binding of 1,1,2,2-tetrachloroethane in vitro. Halpert J Drug Metab Dispos; 1982; 10(5):465-8. PubMed ID: 6128194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]