These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12771661)

  • 1. Transcranial magnetic stimulation as an investigative tool in the study of visual function.
    Merabet LB; Theoret H; Pascual-Leone A
    Optom Vis Sci; 2003 May; 80(5):356-68. PubMed ID: 12771661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex.
    Beckers G; Hömberg V
    Exp Brain Res; 1991; 87(2):421-32. PubMed ID: 1769392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial magnetic stimulation and vision.
    Silvanto J
    Handb Clin Neurol; 2013; 116():655-69. PubMed ID: 24112931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The site of saccadic suppression.
    Thilo KV; Santoro L; Walsh V; Blakemore C
    Nat Neurosci; 2004 Jan; 7(1):13-4. PubMed ID: 14699413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selectivity and timing of motion processing in human temporo-parieto-occipital and occipital cortex: a transcranial magnetic stimulation study.
    Hotson JR; Anand S
    Neuropsychologia; 1999 Feb; 37(2):169-79. PubMed ID: 10080374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Examination of the visual system with transcranial magnetic stimulation].
    Meyer BU; Diehl RR
    Nervenarzt; 1992 Jun; 63(6):328-34. PubMed ID: 1635614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent electrical stimulation of the visual cortex.
    Kanai R; Chaieb L; Antal A; Walsh V; Paulus W
    Curr Biol; 2008 Dec; 18(23):1839-43. PubMed ID: 19026538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial magnetic stimulation reveals high test-retest reliability for phosphenes but not for suppression of visual perception.
    Siniatchkin M; Schlicke C; Stephani U
    Clin Neurophysiol; 2011 Dec; 122(12):2475-81. PubMed ID: 21641863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual learning of line orientation modifies the effects of transcranial magnetic stimulation of visual cortex.
    Neary K; Anand S; Hotson JR
    Exp Brain Res; 2005 Mar; 162(1):23-34. PubMed ID: 15578168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Always expect the unexpected: eye position modulates visual cortex excitability in a stimulus-free environment.
    de Wit MM; Faseyitan O; Coslett HB
    J Neurophysiol; 2024 May; 131(5):937-944. PubMed ID: 38568480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can IPS reach visual awareness without V1? Evidence from TMS in healthy subjects and hemianopic patients.
    Mazzi C; Mancini F; Savazzi S
    Neuropsychologia; 2014 Nov; 64():134-44. PubMed ID: 25258247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining backward masking and transcranial magnetic stimulation in human observers.
    Kammer T; Scharnowski F; Herzog MH
    Neurosci Lett; 2003 Jun; 343(3):171-4. PubMed ID: 12770690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements.
    Van Ettinger-Veenstra HM; Huijbers W; Gutteling TP; Vink M; Kenemans JL; Neggers SF
    J Neurophysiol; 2009 Dec; 102(6):3469-80. PubMed ID: 19812293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of the human visual cortex using image-guided transcranial magnetic stimulation.
    Fernandez E; Alfaro A; Tormos JM; Climent R; Martínez M; Vilanova H; Walsh V; Pascual-Leone A
    Brain Res Brain Res Protoc; 2002 Oct; 10(2):115-24. PubMed ID: 12431711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2.
    Salminen-Vaparanta N; Vanni S; Noreika V; Valiulis V; Móró L; Revonsuo A
    Cereb Cortex; 2014 Oct; 24(10):2751-60. PubMed ID: 23696280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression.
    Kammer T; Puls K; Strasburger H; Hill NJ; Wichmann FA
    Exp Brain Res; 2005 Jan; 160(1):118-28. PubMed ID: 15368086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention.
    Grosbras MH; Paus T
    J Cogn Neurosci; 2002 Oct; 14(7):1109-20. PubMed ID: 12419133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.