These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12771661)

  • 21. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcranial magnetic stimulation of visual cortex in memory: cortical state, interference and reactivation of visual content in memory.
    van de Ven V; Sack AT
    Behav Brain Res; 2013 Jan; 236(1):67-77. PubMed ID: 22921373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception.
    Antal A; Kincses TZ; Nitsche MA; Bartfai O; Demmer I; Sommer M; Paulus W
    Neuroreport; 2002 Dec; 13(17):2229-33. PubMed ID: 12488802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The chronometry of visual perception: review of occipital TMS masking studies.
    de Graaf TA; Koivisto M; Jacobs C; Sack AT
    Neurosci Biobehav Rev; 2014 Sep; 45():295-304. PubMed ID: 25010557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extinguishing Exogenous Attention via Transcranial Magnetic Stimulation.
    Fernández A; Carrasco M
    Curr Biol; 2020 Oct; 30(20):4078-4084.e3. PubMed ID: 32795447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arrhythmic activity in the left frontal eye field facilitates conscious visual perception in humans.
    Chanes L; Quentin R; Vernet M; Valero-Cabré A
    Cortex; 2015 Oct; 71():240-7. PubMed ID: 26247410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex.
    Silvanto J; Lavie N; Walsh V
    J Neurophysiol; 2006 Aug; 96(2):941-5. PubMed ID: 16624999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shining new light on dark percepts: visual sensations induced by TMS.
    Knight R; Mazzi C; Savazzi S
    Exp Brain Res; 2015 Nov; 233(11):3125-32. PubMed ID: 26195168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation.
    Gerwig M; Kastrup O; Meyer BU; Niehaus L
    J Neurol Sci; 2003 Nov; 215(1-2):75-8. PubMed ID: 14568132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation.
    Schaeffner LF; Welchman AE
    Exp Brain Res; 2017 Jan; 235(1):205-217. PubMed ID: 27683006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcranial magnetic stimulation-induced 'visual echoes' are generated in early visual cortex.
    Jolij J; Lamme VA
    Neurosci Lett; 2010 Nov; 484(3):178-81. PubMed ID: 20732388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination.
    Hotson J; Braun D; Herzberg W; Boman D
    Vision Res; 1994 Aug; 34(16):2115-23. PubMed ID: 7941409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feeling with the mind's eye: contribution of visual cortex to tactile perception.
    Sathian K; Zangaladze A
    Behav Brain Res; 2002 Sep; 135(1-2):127-32. PubMed ID: 12356442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.
    van de Ven V; Jacobs C; Sack AT
    J Neurosci; 2012 Jan; 32(1):4-11. PubMed ID: 22219265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low Intensity TMS Enhances Perception of Visual Stimuli.
    Abrahamyan A; Clifford CW; Arabzadeh E; Harris JA
    Brain Stimul; 2015; 8(6):1175-82. PubMed ID: 26169802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The noninvasive dissection of the human visual cortex: using FMRI and TMS to study the organization of the visual brain.
    McKeefry DJ; Gouws A; Burton MP; Morland AB
    Neuroscientist; 2009 Oct; 15(5):489-506. PubMed ID: 19826171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global perception depends on coherent work of bilateral visual cortices: transcranial magnetic stimulation (TMS) studies.
    Zhang X; Han S
    Sci China C Life Sci; 2007 Aug; 50(4):557-65. PubMed ID: 17653679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TMS pulses on the frontal eye fields break coupling between visuospatial attention and eye movements.
    Neggers SF; Huijbers W; Vrijlandt CM; Vlaskamp BN; Schutter DJ; Kenemans JL
    J Neurophysiol; 2007 Nov; 98(5):2765-78. PubMed ID: 17699696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.