These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12771818)

  • 41. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.
    Zhao D; Banks SA; Mitchell KH; D'Lima DD; Colwell CW; Fregly BJ
    J Orthop Res; 2007 Jun; 25(6):789-97. PubMed ID: 17343285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy.
    Lu TW; Tsai TY; Kuo MY; Hsu HC; Chen HL
    Med Eng Phys; 2008 Oct; 30(8):1004-12. PubMed ID: 18417412
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intraoperative joint gaps and mediolateral balance affect postoperative knee kinematics in posterior-stabilized total knee arthroplasty.
    Watanabe T; Muneta T; Sekiya I; Banks SA
    Knee; 2015 Dec; 22(6):527-34. PubMed ID: 26014342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
    Liu-Barba D; Hull ML; Howell SM
    J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of knee laxity on in vivo kinematics of meniscal-bearing knee prostheses.
    Ishii Y; Noguchi H; Matsuda Y; Takeda M; Walker SA; Komistek RD
    Knee; 2007 Aug; 14(4):269-74. PubMed ID: 17566742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In-vivo patellar tendon kinematics during weight-bearing deep knee flexion.
    Kobayashi K; Sakamoto M; Hosseini A; Rubash HE; Li G
    J Orthop Res; 2012 Oct; 30(10):1596-603. PubMed ID: 22492400
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A three-dimensional MRI analysis of knee kinematics.
    Patel VV; Hall K; Ries M; Lotz J; Ozhinsky E; Lindsey C; Lu Y; Majumdar S
    J Orthop Res; 2004 Mar; 22(2):283-92. PubMed ID: 15013086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty.
    Stiehl JB; Komistek RD; Dennis DA; Paxson RD; Hoff WA
    J Bone Joint Surg Br; 1995 Nov; 77(6):884-9. PubMed ID: 7593100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How effective are added constraints in improving TKR kinematics?
    van Duren BH; Pandit H; Beard DJ; Zavatsky AB; Gallagher JA; Thomas NP; Shakespeare DT; Murray DW; Gill HS
    J Biomech; 2007; 40 Suppl 1():S31-7. PubMed ID: 17433336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty.
    Argenson JN; Scuderi GR; Komistek RD; Scott WN; Kelly MA; Aubaniac JM
    J Biomech; 2005 Feb; 38(2):277-84. PubMed ID: 15598454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo kinematic analysis of posterior-stabilized total knee arthroplasty for the valgus knee operated by the gap-balancing technique.
    Suzuki K; Hara N; Mikami S; Tomita T; Iwamoto K; Yamazaki T; Sugamoto K; Matsuno S
    Knee; 2014 Dec; 21(6):1124-8. PubMed ID: 25153613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion.
    Tamaki M; Tomita T; Watanabe T; Yamazaki T; Yoshikawa H; Sugamoto K
    J Arthroplasty; 2009 Sep; 24(6):972-8. PubMed ID: 19033084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations.
    Benoit DL; Ramsey DK; Lamontagne M; Xu L; Wretenberg P; Renström P
    Clin Orthop Relat Res; 2007 Jan; 454():81-8. PubMed ID: 17202918
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo kinematics and kinetics of a bi-cruciate substituting total knee arthroplasty: a combined fluoroscopic and gait analysis study.
    Catani F; Ensini A; Belvedere C; Feliciangeli A; Benedetti MG; Leardini A; Giannini S
    J Orthop Res; 2009 Dec; 27(12):1569-75. PubMed ID: 19572410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging.
    Passmore E; Sangeux M
    Gait Posture; 2016 Mar; 45():211-6. PubMed ID: 26979908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comments on "validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion".
    Tashman S
    J Biomech; 2008 Nov; 41(15):3290-1: author reply 3292-3. PubMed ID: 18930460
    [No Abstract]   [Full Text] [Related]  

  • 57. The clinical epicondylar axis is not the functional flexion axis of the human knee.
    Mochizuki T; Sato T; Blaha JD; Tanifuji O; Kobayashi K; Yamagiwa H; Watanabe S; Koga Y; Omori G; Endo N
    J Orthop Sci; 2014 May; 19(3):451-6. PubMed ID: 24510360
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Helical axes of passive knee joint motions.
    Blankevoort L; Huiskes R; de Lange A
    J Biomech; 1990; 23(12):1219-29. PubMed ID: 2292601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics.
    Li G; Wuerz TH; DeFrate LE
    J Biomech Eng; 2004 Apr; 126(2):314-8. PubMed ID: 15179865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparing three attachment systems used to determine knee kinematics during gait.
    Südhoff I; Van Driessche S; Laporte S; de Guise JA; Skalli W
    Gait Posture; 2007 Apr; 25(4):533-43. PubMed ID: 16875824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.