These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 12772829)

  • 1. MAROS: a decision support system for optimizing monitoring plans.
    Aziz JJ; Ling M; Rifai HS; Newell CJ; Gonzales JR
    Ground Water; 2003; 41(3):355-67. PubMed ID: 12772829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Groundwater monitoring plans at small-scale sites--an innovative spatial and temporal methodology.
    Ling M; Rifai HS; Newell CJ; Aziz JJ; Gonzales JR
    J Environ Monit; 2003 Feb; 5(1):126-34. PubMed ID: 12619767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions.
    Wu J; Zheng C; Chien CC
    J Contam Hydrol; 2005 Mar; 77(1-2):41-65. PubMed ID: 15722172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site.
    Chadalavada S; Datta B; Naidu R
    Environ Monit Assess; 2011 Feb; 173(1-4):929-40. PubMed ID: 20390346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.
    Moreau-Fournier MF; Daughney CJ
    J Environ Monit; 2012 Dec; 14(12):3129-36. PubMed ID: 23104002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial-temporal assessment and redesign of groundwater quality monitoring network: a case study.
    Owlia RR; Abrishamchi A; Tajrishy M
    Environ Monit Assess; 2011 Jan; 172(1-4):263-73. PubMed ID: 20180017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial interpolation methods for nonstationary plume data.
    Reed PM; Ellsworth TR; Minsker BS
    Ground Water; 2004; 42(2):190-202. PubMed ID: 15035584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal groundwater contamination monitoring using pumping wells.
    Shlomi S; Ostfeld A; Rubin H; Shoemaker C
    Water Sci Technol; 2010; 62(3):556-69. PubMed ID: 20706003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of landfill leachate dispersion using reflectance spectroscopy and ground-penetrating radar.
    Splajt T; Ferrier G; Frostick LE
    Environ Sci Technol; 2003 Sep; 37(18):4293-8. PubMed ID: 14524467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geostatistical ground water monitoring of a point source NO3(-)-N plume entering a restored riparian zone.
    Johnson DM; Osiensky JL; Miller SM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 May; 38(5):719-35. PubMed ID: 12744428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Flaw of demand coverage based method for optimal locations of monitoring stations and modification].
    Liu SM; Li ZY; Chen JD; Wang Q; Meng FL
    Huan Jing Ke Xue; 2010 Jan; 31(1):88-92. PubMed ID: 20329521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of multi-criteria decision analysis to assess sampling strategies in eutrophic urbanized waterbodies.
    Abbatangelo J; Byrne A; Butler JF; Wilson JM
    Environ Monit Assess; 2019 Aug; 191(9):589. PubMed ID: 31444584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal space-time coverage and exploration costs in groundwater monitoring networks.
    Nunes LM; Cunha MC; Ribeiro L
    Environ Monit Assess; 2004; 93(1-3):103-24. PubMed ID: 15074612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume.
    Rubin H; Buddemeier RW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Nov; 37(10):1813-39. PubMed ID: 12413211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sampling the soil in long-term forest plots: the implications of spatial variation.
    Kirwan N; Oliver MA; Moffat AJ; Morgan GW
    Environ Monit Assess; 2005 Dec; 111(1-3):149-72. PubMed ID: 16311827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing groundwater remediation policies: a fuzzy compatibility analysis decision aid.
    Nasiri F; Huang G; Fuller N
    J Environ Manage; 2007 Jan; 82(1):13-23. PubMed ID: 16516373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Economics of place-based monitoring under the safe drinking water act, part II: design and development of place-based monitoring strategies.
    Brands E; Rajagopal R
    Environ Monit Assess; 2008 Aug; 143(1-3):91-102. PubMed ID: 17882517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches.
    Varekar V; Karmakar S; Jha R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2308-28. PubMed ID: 26408122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.