BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12772956)

  • 1. Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments.
    Darnault CJ; Garnier P; Kim YJ; Oveson KL; Steenhuis TS; Parlange JY; Jenkins M; Ghiorse WC; Baveye P
    Water Environ Res; 2003; 75(2):113-20. PubMed ID: 12772956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing risk models of Cryptosporidium transport in soils from vegetated, tilted soilbox experiments.
    Harter T; Atwill ER; Hou L; Karle BM; Tate KW
    J Environ Qual; 2008; 37(1):245-58. PubMed ID: 18178898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and fate of Cryptosporidium parvum oocysts in intermittent sand filters.
    Logan AJ; Stevik TK; Siegrist RL; Rønn RM
    Water Res; 2001 Dec; 35(18):4359-69. PubMed ID: 11763038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.
    Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD
    Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of tillage and rainfall on transport of manure-applied Cryptosporidium parvum oocysts through soil.
    Ramirez NE; Wang P; Lejeune J; Shipitalo MJ; Ward LA; Sreevatsan S; Dick WA
    J Environ Qual; 2009; 38(6):2394-401. PubMed ID: 19875795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of Cryptosporidium parvum oocysts in sandy soil: impact of length scale.
    SantamarĂ­a J; Quinonez-Diaz Mde J; Lemond L; Arnold RG; Quanrud D; Gerba C; Brusseau ML
    J Environ Monit; 2011 Dec; 13(12):3481-4. PubMed ID: 22027739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Die-off of Cryptosporidium parvum in soil and wastewater effluents.
    Nasser AM; Tweto E; Nitzan Y
    J Appl Microbiol; 2007 Jan; 102(1):169-76. PubMed ID: 17184332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The infectivity of Cryptosporidium parvum in healthy volunteers.
    DuPont HL; Chappell CL; Sterling CR; Okhuysen PC; Rose JB; Jakubowski W
    N Engl J Med; 1995 Mar; 332(13):855-9. PubMed ID: 7870140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples.
    Carey CM; Lee H; Trevors JT
    J Microbiol Methods; 2006 Nov; 67(2):363-72. PubMed ID: 16730821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsurface Transport of in Soils of Wisconsin's Carbonate Aquifer Region.
    Zopp Z; Thompson AM; Karthikeyan KG; Madison F; Long SC
    J Environ Qual; 2016 Sep; 45(5):1607-1615. PubMed ID: 27695748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurries.
    Petersen HH; Enemark HL; Olsen A; Amin MG; Dalsgaard A
    Appl Environ Microbiol; 2012 Sep; 78(17):5994-6000. PubMed ID: 22706058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of vegetated buffer strips for retaining Cryptosporidium parvum.
    Tate KW; Pereira MD; Atwill ER
    J Environ Qual; 2004; 33(6):2243-51. PubMed ID: 15537947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of MS2 phage, Escherichia coli, Clostridium perfringens, Cryptosporidium parvum, and Giardia intestinalis in a gravel and a sandy soil.
    Hijnen WA; Brouwer-Hanzens AJ; Charles KJ; Medema GJ
    Environ Sci Technol; 2005 Oct; 39(20):7860-8. PubMed ID: 16295848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment.
    McLaughlin SJ; Kalita PK; Kuhlenschmidt MS
    J Environ Manage; 2013 Dec; 131():121-8. PubMed ID: 24157412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drinking water treatment processes for removal of Cryptosporidium and Giardia.
    Betancourt WQ; Rose JB
    Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Cryptosporidium parvum oocysts in environmental water in Hokkaido, Japan.
    Tsushima Y; Karanis P; Kamada T; Nagasawa H; Xuan X; Igarashi I; Fujisaki K; Takahashi E; Mikami T
    J Vet Med Sci; 2001 Mar; 63(3):233-6. PubMed ID: 11307921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptosporidium parvum oocyst inactivation in field soil and its relation to soil characteristics: analyses using the geographic information systems.
    Kato S; Jenkins M; Fogarty E; Bowman D
    Sci Total Environ; 2004 Apr; 321(1-3):47-58. PubMed ID: 15050384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NOM and biofilm on the removal of Cryptosporidium parvum oocysts in rapid filters.
    Dai X; Hozalski RM
    Water Res; 2002 Aug; 36(14):3523-32. PubMed ID: 12230198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Cryptosporidium parvum oocysts in field soil.
    Kato S; Jenkins MB; Ghiorse WC; Fogarty EA; Bowman DD
    Southeast Asian J Trop Med Public Health; 2001; 32 Suppl 2():183-9. PubMed ID: 12041587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.