BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12773170)

  • 1. Circular dichroism and synchrotron radiation circular dichroism spectroscopy: tools for drug discovery.
    Wallace BA; Janes RW
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):631-3. PubMed ID: 12773170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics.
    Miles AJ; Wallace BA
    Chem Soc Rev; 2006 Jan; 35(1):39-51. PubMed ID: 16365641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-Ligand Interaction Monitored by Synchrotron Radiation Circular Dichroism.
    Hussain R; Hughes CS; Siligardi G
    Methods Mol Biol; 2020; 2089():87-118. PubMed ID: 31773649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein characterisation by synchrotron radiation circular dichroism spectroscopy.
    Wallace BA
    Q Rev Biophys; 2009 Nov; 42(4):317-70. PubMed ID: 20450533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD).
    Hussain R; Siligardi G
    Adv Exp Med Biol; 2016; 922():43-59. PubMed ID: 27553234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchrotron radiation circular dichroism spectroscopy: vacuum ultraviolet irradiation does not damage protein integrity.
    Orry AJ; Janes RW; Sarra R; Hanlon MR; Wallace BA
    J Synchrotron Radiat; 2001 May; 8(3):1027-9. PubMed ID: 11486408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics.
    Wallace BA; Janes RW
    Curr Opin Chem Biol; 2001 Oct; 5(5):567-71. PubMed ID: 11578931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular-Dichroism and Synchrotron-Radiation Circular-Dichroism Spectroscopy as Tools to Monitor Protein Structure in a Lipid Environment.
    Matsuo K; Gekko K
    Methods Mol Biol; 2019; 2003():253-279. PubMed ID: 31218622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchrotron radiation circular dichroism (SRCD) spectroscopy: an enhanced method for examining protein conformations and protein interactions.
    Wallace BA; Janes RW
    Biochem Soc Trans; 2010 Aug; 38(4):861-73. PubMed ID: 20658968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantages of synchrotron radiation circular dichroism spectroscopy to study intrinsically disordered proteins.
    Kumagai PS; DeMarco R; Lopes JLS
    Eur Biophys J; 2017 Oct; 46(7):599-606. PubMed ID: 28258312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular-dichroism and synchrotron-radiation circular-dichroism spectroscopy as tools to monitor protein structure in a lipid environment.
    Matsuo K; Gekko K
    Methods Mol Biol; 2013; 974():151-76. PubMed ID: 23404276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy.
    Siligardi G; Hussain R; Patching SG; Phillips-Jones MK
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):34-42. PubMed ID: 23811229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomedical applications of synchrotron radiation circular dichroism spectroscopy: identification of mutant proteins associated with disease and development of a reference database for fold motifs.
    Wallace BA; Wien F; Miles AJ; Lees JG; Hoffmann SV; Evans P; Wistow GJ; Slingsby C
    Faraday Discuss; 2004; 126():237-43; discussion 245-54. PubMed ID: 14992410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plications of extended ultra-violet circular dichroism spectroscopy in biology and medicine.
    Jones GR; Clarke DT
    Faraday Discuss; 2004; 126():223-36; discussion 245-54. PubMed ID: 14992409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy.
    Wien F; Wallace BA
    Appl Spectrosc; 2005 Sep; 59(9):1109-13. PubMed ID: 16197633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the intact FsrC membrane histidine kinase with its pheromone ligand GBAP revealed through synchrotron radiation circular dichroism.
    Patching SG; Edara S; Ma P; Nakayama J; Hussain R; Siligardi G; Phillips-Jones MK
    Biochim Biophys Acta; 2012 Jul; 1818(7):1595-602. PubMed ID: 22366202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD spectroscopy: an essential tool for quality control of protein folding.
    Siligardi G; Hussain R
    Methods Mol Biol; 2015; 1261():255-76. PubMed ID: 25502204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating protein:protein complex formation using synchrotron radiation circular dichroism spectroscopy.
    Cowieson NP; Miles AJ; Robin G; Forwood JK; Kobe B; Martin JL; Wallace BA
    Proteins; 2008 Mar; 70(4):1142-6. PubMed ID: 17894344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy.
    Wien F; Miles AJ; Lees JG; Vrønning Hoffmann S; Wallace BA
    J Synchrotron Radiat; 2005 Jul; 12(Pt 4):517-23. PubMed ID: 15968132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein.
    Rodi DJ; Janes RW; Sanganee HJ; Holton RA; Wallace BA; Makowski L
    J Mol Biol; 1999 Jan; 285(1):197-203. PubMed ID: 9878399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.