These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 12773585)

  • 1. Neural correlates of Pavlovian conditioning in components of the neural network supporting ciliary locomotion in Hermissenda.
    Crow T; Tian LM
    Learn Mem; 2003; 10(3):209-16. PubMed ID: 12773585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interneuronal projections to identified cilia-activating pedal neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2003 May; 89(5):2420-9. PubMed ID: 12740402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statocyst hair cell activation of identified interneurons and foot contraction motor neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2004 Jun; 91(6):2874-83. PubMed ID: 14985407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of correlates of classical conditioning in identified medial and lateral type A photoreceptors of Hermissenda.
    Frysztak RJ; Crow T
    J Neurosci; 1993 Jul; 13(7):2889-97. PubMed ID: 8331378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of monosynaptic and complex PSPs in type I interneurons of conditioned Hermissenda.
    Crow T; Tian LM
    J Neurosci; 2002 Sep; 22(17):7818-24. PubMed ID: 12196605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysensory interneuronal projections to foot contractile pedal neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2009 Feb; 101(2):824-33. PubMed ID: 19073803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory regulation of network components underlying ciliary locomotion in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2008 Nov; 100(5):2496-506. PubMed ID: 18768639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin-immunoreactive CPT interneurons in Hermissenda: identification of sensory input and motor projections.
    Tian LM; Kawai R; Crow T
    J Neurophysiol; 2006 Jul; 96(1):327-35. PubMed ID: 16641389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic enhancement and enhanced excitability in presynaptic and postsynaptic neurons in the conditioned stimulus pathway of Hermissenda.
    Frysztak RJ; Crow T
    J Neurosci; 1997 Jun; 17(11):4426-33. PubMed ID: 9151759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of type B and A photoreceptor inhibitory synaptic connections in conditioned Hermissenda.
    Frysztak RJ; Crow T
    J Neurosci; 1994 Mar; 14(3 Pt 1):1245-50. PubMed ID: 8120622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network interneurons underlying ciliary locomotion in Hermissenda.
    Crow T; Jin NG; Tian LM
    J Neurophysiol; 2013 Feb; 109(3):640-8. PubMed ID: 23155173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pavlovian conditioning of Hermissenda: current cellular, molecular, and circuit perspectives.
    Crow T
    Learn Mem; 2004; 11(3):229-38. PubMed ID: 15169851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2002 Jan; 87(1):322-32. PubMed ID: 11784753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective expression of electrical correlates of differential appetitive classical conditioning in a feeding network.
    Jones N; Kemenes G; Benjamin PR
    J Neurophysiol; 2001 Jan; 85(1):89-97. PubMed ID: 11152709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation.
    Talk AC; Muzzio IA; Matzel LD
    Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis.
    Kemenes G; Staras K; Benjamin PR
    J Neurophysiol; 1997 Nov; 78(5):2351-62. PubMed ID: 9356387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of short-term associative memory by calcium-dependent protein kinase.
    Matzel LD; Lederhendler II; Alkon DL
    J Neurosci; 1990 Jul; 10(7):2300-7. PubMed ID: 2376776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monosynaptic connections between identified A and B photoreceptors and interneurons in Hermissenda: evidence for labeled-lines.
    Crow T; Tian LM
    J Neurophysiol; 2000 Jul; 84(1):367-75. PubMed ID: 10899211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis.
    Blackwell KT
    Anat Rec B New Anat; 2006 Jan; 289(1):25-37. PubMed ID: 16437555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular correlates of classical conditioning in identified light responsive pedal neurons of Hermissenda crassicornis.
    Hodgson TM; Crow T
    Brain Res; 1992 Jan; 570(1-2):267-71. PubMed ID: 1617416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.