BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12774839)

  • 1. Structural rearrangements in the gray matter of the spinal cord after gravitational overloading.
    Pashchenko PS; Risman BV
    Neurosci Behav Physiol; 2003 May; 33(4):369-73. PubMed ID: 12774839
    [No Abstract]   [Full Text] [Related]  

  • 2. [Structural changes in spinal cord gray matter induced by gravitational overloads].
    Pashchenko PS; Risman BV
    Morfologiia; 2002; 121(1):49-54. PubMed ID: 12108101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Structure of motor nuclei of the rat spinal cord during postnatal ontogeny (according to the results of light and electron microscopic studies].
    Motorina MV
    Arkh Anat Gistol Embriol; 1980 Mar; 78(3):33-42. PubMed ID: 7396733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hypergravity on the development of monoaminergic systems in the rat spinal cord.
    Giménez y Ribotta M; Sandillon F; Privat A
    Brain Res Dev Brain Res; 1998 Dec; 111(2):147-57. PubMed ID: 9838085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological comparison by scanning electron microscopy of transient retina-muscle synapses and long-lived spinal cord-muscle synapses.
    Thompson JM; Norby SW
    Cell Mol Biol; 1992 May; 38(3):327-36. PubMed ID: 1611663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats.
    Ye JC; Qin Y; Wu YF; Wang P; Tang Y; Huang L; Ma MJ; Zeng YS; Shen HY
    Spinal Cord; 2016 Nov; 54(11):933-941. PubMed ID: 27001129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electrotonic synapses in the mammalian spinal cord].
    Motorina MV
    Arkh Anat Gistol Embriol; 1986 Jul; 91(7):13-20. PubMed ID: 3530198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The structural organization of the normal rat area postrema and under conditions of chronic exposure to gravitational loads].
    Pashchenko PS; Sukhoterin AF
    Morfologiia; 2000; 117(2):36-41. PubMed ID: 10853249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural characterization of the accessory lobes of Lachi in the lumbosacral spinal cord of the pigeon with special reference to intrinsic mechanoreceptors.
    Rosenberg J; Necker R
    J Comp Neurol; 2002 Jun; 447(3):274-85. PubMed ID: 11984821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specialized contacts of astrocytes with astrocytes and with other cell types in the spinal cord of the cat.
    Morales R; Duncan D
    Anat Rec; 1975 Jun; 182(2):255-65. PubMed ID: 50752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed synapses discovered and mapped throughout mammalian spinal cord.
    Rash JE; Dillman RK; Bilhartz BL; Duffy HS; Whalen LR; Yasumura T
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4235-9. PubMed ID: 8633047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synapses upon the axon origin of dorsal horn neurons in the rat spinal cord.
    Réthelyi M; Lozsádi D
    Neurosci Lett; 1990 Sep; 117(1-2):20-5. PubMed ID: 2290616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes of anterior horn neurons and their synaptic input caudal to a low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study.
    Nacimiento W; Sappok T; Brook GA; Tóth L; Schoen SW; Noth J; Kreutzberg GW
    Acta Neuropathol; 1995; 90(6):552-64. PubMed ID: 8615075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Formation of intricate synaptic complexes in cultures of dissociated spinal cord and spinal ganglia cells].
    Skibo GG; Viktorov IV; Koval' LM
    Dokl Akad Nauk SSSR; 1984; 276(3):729-31. PubMed ID: 6468266
    [No Abstract]   [Full Text] [Related]  

  • 15. [The synaptic architecture of propriospinal neurons in cultured mouse spinal cord].
    Wang LC; Pao X
    Shi Yan Sheng Wu Xue Bao; 1992 Dec; 25(4):349-57. PubMed ID: 1303005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate- and GABA-immunoreactive synapses on sympathetic preganglionic neurons caudal to a spinal cord transection in rats.
    Llewellyn-Smith IJ; Cassam AK; Krenz NR; Krassioukov AV; Weaver LC
    Neuroscience; 1997 Oct; 80(4):1225-35. PubMed ID: 9284072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental study of early ultrastructural changes in the injured spinal cord.
    Shibasaki K; Kakulas BA
    Nihon Seikeigeka Gakkai Zasshi; 1981 Dec; 55(12):1693-701. PubMed ID: 7334258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural evidence for GABA-mediated disinhibitory circuits in the spinal cord of the cat.
    Liu H; Llewellyn-Smith IJ; Pilowsky P; Basbaum AI
    Neurosci Lett; 1992 Apr; 138(1):183-7. PubMed ID: 1407660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulbospinal respiratory neurons are a source of double synapses onto phrenic motoneurons following cervical spinal cord hemisection in adult rats.
    Goshgarian HG; Ellenberger HH; Feldman JL
    Brain Res; 1993 Jan; 600(1):169-73. PubMed ID: 8422584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human and rodent spinal cord neurons in culture.
    Kim SU; Krieger C; Eisen A
    Adv Neurol; 1991; 56():57-66. PubMed ID: 1853782
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.