These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12774991)

  • 1. Microwave plasma conversion of volatile organic compounds.
    Ko Y; Yang G; Chang DP; Kennedy IM
    J Air Waste Manag Assoc; 2003 May; 53(5):580-5. PubMed ID: 12774991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth.
    Hashisho Z; Rood M; Botich L
    Environ Sci Technol; 2005 Sep; 39(17):6851-9. PubMed ID: 16190249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave process for volatile organic compound abatement.
    Cha CY; Carlisle CT
    J Air Waste Manag Assoc; 2001 Dec; 51(12):1628-41. PubMed ID: 15666467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A; Rodriguez JM
    J Hazard Mater; 2007 Sep; 148(1-2):419-27. PubMed ID: 17408853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-induced combustion of volatile organic compounds in an industrial flue gas over the magnetite fixed-bed.
    Lee BN; Ying WT; Shen YT
    Chemosphere; 2007 Nov; 69(11):1821-6. PubMed ID: 17767944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A
    J Hazard Mater; 2011 Feb; 186(1):820-6. PubMed ID: 21146292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a low-pressure microwave plasma reactor and its application in the treatment of volatile organic compounds.
    Yet-Pole I; Liu YC; Han KY; She TC
    Environ Sci Technol; 2004 Jul; 38(13):3785-91. PubMed ID: 15296333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted generation of standard gas mixtures.
    Xiong G; Pawliszyn J
    Anal Chem; 2002 May; 74(10):2446-9. PubMed ID: 12038774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Combination process of microwave desorption-catalytic combustion for toluene treatment].
    Cao XQ; Zhang H; Huang XM
    Huan Jing Ke Xue; 2013 Jul; 34(7):2546-51. PubMed ID: 24027981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Microwave-Assisted Process technology for HAPSITE's headspace analysis of volatile organic compounds (VOCs).
    Bélanger JM; Paré JR; Turpin R; Schaefer J; Chuang CW
    J Hazard Mater; 2007 Jun; 145(1-2):336-8. PubMed ID: 17267110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect and mechanism of microwave-activated ultraviolet-advanced oxidation technology for adsorbent regeneration.
    Sun Y; Zheng T; Zhang G; Zheng Y; Wang P
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):290-298. PubMed ID: 29034423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of 2.45 GHz microwave induced plasma abatement of CF4.
    Radoiu MT
    Environ Sci Technol; 2003 Sep; 37(17):3985-8. PubMed ID: 12967123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters.
    Leins M; Gaiser S; Schulz A; Walker M; Schumacher U; Hirth T
    J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concomitant adsorption and desorption of organic vapor in dry and humid air streams using microwave and direct electrothermal swing adsorption.
    Hashisho Z; Emamipour H; Rood MJ; Hay KJ; Kim BJ; Thurston D
    Environ Sci Technol; 2008 Dec; 42(24):9317-22. PubMed ID: 19174910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor.
    Kim JH; Cho CH; Shin DH; Hong YC; Shin YW
    J Hazard Mater; 2015 Aug; 294():41-6. PubMed ID: 25841085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs).
    Gallego E; Roca FJ; Perales JF; Guardino X
    Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on removal of NO using adsorption of activated carbon/reduction decomposition of microwave heating.
    Shuang-Chen M; Yao JJ; Gao L
    Environ Technol; 2012; 33(13-15):1811-7. PubMed ID: 22988643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of voltage-sensitive Ca2+ channel function by volatile organic solvents.
    Shafer TJ; Bushnell PJ; Benignus VA; Woodward JJ
    J Pharmacol Exp Ther; 2005 Dec; 315(3):1109-18. PubMed ID: 16109744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry.
    Wu CH; Lin MN; Feng CT; Yang KL; Lo YS; Lo JG
    J Chromatogr A; 2003 May; 996(1-2):225-31. PubMed ID: 12830924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition characteristics of toluene by a corona radical shower system.
    Wu ZL; Gao X; Luo ZY; Ni MJ; Cen KF
    J Environ Sci (China); 2004; 16(4):543-7. PubMed ID: 15495952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.