These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12775070)

  • 1. Kinetics of diesel nanoparticle oxidation.
    Higgins KJ; Jung H; Kittelson DB; Roberts JT; Zachariah MR
    Environ Sci Technol; 2003 May; 37(9):1949-54. PubMed ID: 12775070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals.
    Kim SH; Fletcher RA; Zachariah MR
    Environ Sci Technol; 2005 Jun; 39(11):4021-6. PubMed ID: 15984778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate.
    Müller JO; Su DS; Jentoft RE; Wild U; Schlögl R
    Environ Sci Technol; 2006 Feb; 40(4):1231-6. PubMed ID: 16572780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine.
    Thiruvengadam A; Besch MC; Carder DK; Oshinuga A; Gautam M
    Environ Sci Technol; 2012 Feb; 46(3):1907-13. PubMed ID: 22201285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of diesel oxidation catalysts on the diesel particulate filter regeneration process.
    Lizarraga L; Souentie S; Boreave A; George C; D'Anna B; Vernoux P
    Environ Sci Technol; 2011 Dec; 45(24):10591-7. PubMed ID: 22050688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent volatility of diesel nanoparticles: chassis dynamometer experiments.
    Kwon SB; Lee KW; Saito K; Shinozaki O; Seto T
    Environ Sci Technol; 2003 May; 37(9):1794-802. PubMed ID: 12775050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of soot oxidation by NO2.
    Shrivastava M; Nguyen A; Zheng Z; Wu HW; Jung HS
    Environ Sci Technol; 2010 Jun; 44(12):4796-801. PubMed ID: 20491473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst.
    Feng X; Ge Y; Ma C; Tan J; Yu L; Li J; Wang X
    Sci Total Environ; 2014 Feb; 472():56-62. PubMed ID: 24291555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle emissions from a heavy-duty engine running on alternative diesel fuels.
    Heikkilä J; Virtanen A; Rönkkö T; Keskinen J; Aakko-Saksa P; Murtonen T
    Environ Sci Technol; 2009 Dec; 43(24):9501-6. PubMed ID: 20000547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ternary nucleation as a mechanism for the production of diesel nanoparticles: experimental analysis of the volatile and hygroscopic properties of diesel exhaust using the volatilization and humidification tandem differential mobility analyzer.
    Meyer NK; Ristovski ZD
    Environ Sci Technol; 2007 Nov; 41(21):7309-14. PubMed ID: 18044504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.
    Young LH; Liou YJ; Cheng MT; Lu JH; Yang HH; Tsai YI; Wang LC; Chen CB; Lai JS
    J Hazard Mater; 2012 Jan; 199-200():282-9. PubMed ID: 22119306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses.
    Holmén BA; Ayala A
    Environ Sci Technol; 2002 Dec; 36(23):5041-50. PubMed ID: 12523418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.
    Robinson MA; Olson MR; Liu ZG; Schauer JJ
    J Air Waste Manag Assoc; 2015 Jun; 65(6):759-66. PubMed ID: 25976489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of accelerating soot oxidation by NO
    Li Z; Zhang W; Chen Z; Jiang Q
    Environ Pollut; 2020 Sep; 264():114708. PubMed ID: 32402712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of diesel particles: effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility.
    Alander TJ; Leskinen AP; Raunemaa TM; Rantanen L
    Environ Sci Technol; 2004 May; 38(9):2707-14. PubMed ID: 15180069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of engine load on diesel soot particles.
    Virtanen AK; Ristimäki JM; Vaaraslahti KM; Keskinen J
    Environ Sci Technol; 2004 May; 38(9):2551-6. PubMed ID: 15180050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.
    Westphal GA; Krahl J; Munack A; Ruschel Y; Schröder O; Hallier E; Brüning T; Bünger J
    Environ Sci Technol; 2012 Jun; 46(11):6417-24. PubMed ID: 22587467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Onboard measurements of nanoparticles from a SCR-equipped marine diesel engine.
    Hallquist ÅM; Fridell E; Westerlund J; Hallquist M
    Environ Sci Technol; 2013 Jan; 47(2):773-80. PubMed ID: 23163334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assessment of how distance and diesel oxidation catalyst will impact thermal decomposition behaviors of particles.
    Zhang M; Ge Y; Zhang C; Wang X
    J Environ Sci (China); 2020 Apr; 90():157-169. PubMed ID: 32081312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.