These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12775341)

  • 1. Spinal cord injury: inductive lability can enhance and hasten recovery.
    Krishnan RV
    Int J Neurosci; 2003 Jun; 113(6):761-75. PubMed ID: 12775341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relearning of locomotion in injured spinal cord: new directions for rehabilitation programs.
    Krishnan RV
    Int J Neurosci; 2003 Oct; 113(10):1333-51. PubMed ID: 14534034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord injury: reversing the incorrect cortical maps by inductive lability procedure.
    Krishnan RV
    Int J Neurosci; 2004 Jun; 114(6):633-53. PubMed ID: 15204057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of the spinal neural circuitry after injury.
    Edgerton VR; Tillakaratne NJ; Bigbee AJ; de Leon RD; Roy RR
    Annu Rev Neurosci; 2004; 27():145-67. PubMed ID: 15217329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey.
    Becker M; Parker D
    J Neurophysiol; 2019 Jun; 121(6):2323-2335. PubMed ID: 31017839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparing of Descending Axons Rescues Interneuron Plasticity in the Lumbar Cord to Allow Adaptive Learning After Thoracic Spinal Cord Injury.
    Hansen CN; Faw TD; White S; Buford JA; Grau JW; Basso DM
    Front Neural Circuits; 2016; 10():11. PubMed ID: 26973469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.
    Huie JR; Morioka K; Haefeli J; Ferguson AR
    J Neurotrauma; 2017 May; 34(10):1831-1840. PubMed ID: 27875927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.
    Hormigo KM; Zholudeva LV; Spruance VM; Marchenko V; Cote MP; Vinit S; Giszter S; Bezdudnaya T; Lane MA
    Exp Neurol; 2017 Jan; 287(Pt 2):276-287. PubMed ID: 27582085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved functional recovery with oxandrolone after spinal cord injury in rats.
    Zeman RJ; Bauman WA; Wen X; Ouyang N; Etlinger JD; Cardozo CP
    Neuroreport; 2009 Jun; 20(9):864-8. PubMed ID: 19424096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive changes in the injured spinal cord and their role in promoting functional recovery.
    Fouad K; Tse A
    Neurol Res; 2008 Feb; 30(1):17-27. PubMed ID: 18387259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioception: Bottom-up directive for motor recovery after spinal cord injury.
    Takeoka A
    Neurosci Res; 2020 May; 154():1-8. PubMed ID: 31336141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rehabilitative training and plasticity following spinal cord injury.
    Fouad K; Tetzlaff W
    Exp Neurol; 2012 May; 235(1):91-9. PubMed ID: 21333646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to promote recovery after spinal cord injury.
    Grau JW; Baine RE; Bean PA; Davis JA; Fauss GN; Henwood MK; Hudson KE; Johnston DT; Tarbet MM; Strain MM
    Exp Neurol; 2020 Aug; 330():113334. PubMed ID: 32353465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 16. Plasticity properties of CPG circuits in humans: impact on gait recovery.
    Molinari M
    Brain Res Bull; 2009 Jan; 78(1):22-5. PubMed ID: 19070782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-dependent plasticity: implications for recovery after spinal cord injury.
    Dunlop SA
    Trends Neurosci; 2008 Aug; 31(8):410-8. PubMed ID: 18602172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the recovery of stepping following spinal cord injury mediated by modifying existing neural pathways or by generating new pathways? A perspective.
    de Leon RD; Roy RR; Edgerton VR
    Phys Ther; 2001 Dec; 81(12):1904-11. PubMed ID: 11736625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord.
    Zholudeva LV; Qiang L; Marchenko V; Dougherty KJ; Sakiyama-Elbert SE; Lane MA
    Trends Neurosci; 2018 Sep; 41(9):625-639. PubMed ID: 30017476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.