BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 12775486)

  • 1. Energy cost and physiological responses of males snowshoeing with rotating and fixed toe-cord designs in powdered snow conditions.
    Dalleck LC; DeVoe DE; Kravitz L
    Ergonomics; 2003 Jul; 46(9):875-81. PubMed ID: 12775486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energy expenditure of snowshoeing in packed vs. unpacked snow at low-level walking speeds.
    Connolly DA
    J Strength Cond Res; 2002 Nov; 16(4):606-10. PubMed ID: 12423193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Running-specific prostheses permit energy cost similar to nonamputees.
    Brown MB; Millard-Stafford ML; Allison AR
    Med Sci Sports Exerc; 2009 May; 41(5):1080-7. PubMed ID: 19346979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost during locomotion across snow: a comparison of four types of snowshoes with snowshoe design considerations.
    Knapik JJ; Hickey C; Ortega S; de Pontbriand R
    Work; 2002; 18(2):171-7. PubMed ID: 12441581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy expenditure and clearing snow: a comparison of shovel and snow pusher.
    Smolander J; Louhevaara V; Ahonen E; Polari J; Klen T
    Ergonomics; 1995 Apr; 38(4):749-53. PubMed ID: 7729401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of walking with snowshoes.
    Browning RC; Kurtz RN; Kerherve H
    Sports Biomech; 2012 Mar; 11(1):73-84. PubMed ID: 22518946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy costs of walking on a dual-action treadmill in men and women.
    Butts NK; Knox KM; Foley TS
    Med Sci Sports Exerc; 1995 Jan; 27(1):121-5. PubMed ID: 7898327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiorespiratory strain during walking in snow with boots of different weights.
    Smolander J; Louhevaara V; Hakola T; Ahonen E; Klen T
    Ergonomics; 1989 Jan; 32(1):3-13. PubMed ID: 2924759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of the assessment of the oxygen/heart rate relationship during a workday.
    Bouchard DR; Trudeau F
    Appl Ergon; 2007 Sep; 38(5):491-7. PubMed ID: 17368556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity of Nordic Walking in young females with different peak O2 consumption.
    Jürimäe T; Meema K; Karelson K; Purge P; Jürimäe J
    Clin Physiol Funct Imaging; 2009 Sep; 29(5):330-4. PubMed ID: 19469785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of fitness and body weight on preferred exercise intensity.
    Pintar JA; Robertson RJ; Kriska AM; Nagle E; Goss FL
    Med Sci Sports Exerc; 2006 May; 38(5):981-8. PubMed ID: 16672854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversed drift in heart rate but increased oxygen uptake at fixed work rate during 24 h ultra-endurance exercise.
    Mattsson CM; Enqvist JK; Brink-Elfegoun T; Johansson PH; Bakkman L; Ekblom B
    Scand J Med Sci Sports; 2010 Apr; 20(2):298-304. PubMed ID: 19486489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiorespiratory and thermoregulatory response of working in fire-fighter protective clothing in a temperate environment.
    Baker SJ; Grice J; Roby L; Matthews C
    Ergonomics; 2000 Sep; 43(9):1350-8. PubMed ID: 11014757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic demands of the dance simulation game.
    Tan B; Aziz AR; Chua K; Teh KC
    Int J Sports Med; 2002 Feb; 23(2):125-9. PubMed ID: 11842360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Load carriage energy expenditure with and without hiking poles during inclined walking.
    Jacobson BH; Wright T; Dugan B
    Int J Sports Med; 2000 Jul; 21(5):356-9. PubMed ID: 10950445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and perceptual responses to load-carrying in female subjects using internal and external frame backpacks.
    Kirk J; Schneider DA
    Ergonomics; 1992 Apr; 35(4):445-55. PubMed ID: 1597175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reliability and validity of the physiological cost index in healthy subjects while walking on 2 different tracks.
    Graham RC; Smith NM; White CM
    Arch Phys Med Rehabil; 2005 Oct; 86(10):2041-6. PubMed ID: 16213251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.