These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12775489)

  • 1. Impairments of manual tracking performance during spaceflight are associated with specific effects of microgravity on visuomotor transformations.
    Heuer H; Manzey D; Lorenz B; Sangals J
    Ergonomics; 2003 Jul; 46(9):920-34. PubMed ID: 12775489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairments of manual tracking performance during spaceflight: more converging evidence from a 20-day space mission.
    Manzey D; Lorenz TB; Heuers H; Sangals J
    Ergonomics; 2000 May; 43(5):589-609. PubMed ID: 10877478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human sensorimotor coordination during spaceflight: an analysis of pointing and tracking responses during the "Neurolab" Space Shuttle mission.
    Bock O; Fowler B; Comfort D
    Aviat Space Environ Med; 2001 Oct; 72(10):877-83. PubMed ID: 11601550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manual control in space--research on perceptual-motor functions under zero gravity condition.
    Tada A; Suematsu S; Okabe M
    Biol Sci Space; 2001 Oct; 15 Suppl():S84-90. PubMed ID: 12101353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of mental performance during spaceflight.
    Manzey D
    Aviat Space Environ Med; 2000 Sep; 71(9 Suppl):A69-75. PubMed ID: 10993313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight.
    Manzey D; Lorenz B; Poljakov V
    Ergonomics; 1998 Apr; 41(4):537-59. PubMed ID: 9557591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human performance during spaceflight.
    Manzey D; Lorenz B
    Hum Perf Extrem Environ; 1999 Apr; 4(1):8-13. PubMed ID: 12182201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromyographic activity in the Rhesus monkey forelimb muscles during a goal directed movement and locomotion before, during and after spaceflight.
    Canu MH; Kozlovskaya IB; Falempin M
    J Gravit Physiol; 2003 Dec; 10(2):19-28. PubMed ID: 15838974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of microgravity on human cognitive function in space flight].
    Yang JJ; Shen Z
    Space Med Med Eng (Beijing); 2003 Dec; 16(6):463-7. PubMed ID: 15008197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optokinetic stimulation in microgravity: torsional eye movements and subjective visual vertical.
    Krafczyk S; Knapek M; Philipp J; Querner V; Dieterich M
    Aviat Space Environ Med; 2003 May; 74(5):517-21. PubMed ID: 12751579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity of head movements and sensory-motor adaptation during and after short spaceflight.
    Hlavacka F; Kornilova LN
    J Gravit Physiol; 2004 Jul; 11(2):P13-6. PubMed ID: 16231430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Baroni G; Pedotti A; Massion J; Ferrigno G
    J Biomech; 2005 Apr; 38(4):769-77. PubMed ID: 15713298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some virtual reality and telemedicine applications useful for long duration spaceflight from a systems engineering perspective.
    Holland D; Barfield W
    Stud Health Technol Inform; 1999; 62():141-7. PubMed ID: 10538344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer systems analysis of spaceflight induced changes in left ventricular mass.
    Summers RL; Martin DS; Meck JV; Coleman TG
    Comput Biol Med; 2007 Mar; 37(3):358-63. PubMed ID: 16808910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of a long stay under microgravity on the vestibular function and tracking eye movements].
    Kornilova LN; Alekhina MI; Temnikova VV; Reshke M; Sagalovich SV; Naumov IA; Kozlovskaia IB; Vasin AV
    Fiziol Cheloveka; 2006; 32(5):56-64. PubMed ID: 17100341
    [No Abstract]   [Full Text] [Related]  

  • 17. Eye tracking, point of gaze, and performance degradation during disorientation.
    Cheung B; Hofer K
    Aviat Space Environ Med; 2003 Jan; 74(1):11-20. PubMed ID: 12546294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perception of linear acceleration in weightlessness.
    Arrott AP; Young LR; Merfeld DM
    Aviat Space Environ Med; 1990 Apr; 61(4):319-26. PubMed ID: 2339967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changed visuomotor transformations during and after prolonged microgravity.
    Sangals J; Heuer H; Manzey D; Lorenz B
    Exp Brain Res; 1999 Dec; 129(3):378-90. PubMed ID: 10591910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of cognitive and perceptual-motor performance in space.
    Fowler B; Comfort D; Bock O
    Aviat Space Environ Med; 2000 Sep; 71(9 Suppl):A66-8. PubMed ID: 10993312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.