These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 12775903)

  • 1. TEM observation of seven retrieved total knee joints made of Co-Cr-Mo and Ti-Al-V alloys.
    Ichinose S; Muneta T; Aoki H; Tagami M
    Biomed Mater Eng; 2003; 13(2):125-34. PubMed ID: 12775903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of metal ion release and cytotoxicity in Co-Cr-Mo and Ti-Al-V alloy in total knee prosthesis - scanning electron microscopic observation.
    Ichinose S; Muneta T; Sekiya I; Itoh S; Aoki H; Tagami M
    J Mater Sci Mater Med; 2003 Jan; 14(1):79-86. PubMed ID: 15348542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial kinetics of titanium- and cobalt-based implant alloys in human serum: metal release and biofilm formation.
    Hallab NJ; Skipor A; Jacobs JJ
    J Biomed Mater Res A; 2003 Jun; 65(3):311-8. PubMed ID: 12746877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size, shape, and composition of wear particles from metal-metal hip simulator testing: effects of alloy and number of loading cycles.
    Catelas I; Bobyn JD; Medley JB; Krygier JJ; Zukor DJ; Huk OL
    J Biomed Mater Res A; 2003 Oct; 67(1):312-27. PubMed ID: 14517891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt, chromium, and nickel concentrations in body fluids of patients with porous-coated knee or hip prostheses.
    Sunderman FW; Hopfer SM; Swift T; Rezuke WN; Ziebka L; Highman P; Edwards B; Folcik M; Gossling HR
    J Orthop Res; 1989; 7(3):307-15. PubMed ID: 2649648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo corrosion of cobalt-chromium and titanium wear particles.
    Shahgaldi BF; Heatley FW; Dewar A; Corrin B
    J Bone Joint Surg Br; 1995 Nov; 77(6):962-6. PubMed ID: 7593115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt-chromium-titanium alloy for removable partial dentures.
    Iwama CY; Preston JD
    Int J Prosthodont; 1997; 10(4):309-17. PubMed ID: 9484040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of plasma-sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt-chromium alloys.
    Ducheyne P; Healy KE
    J Biomed Mater Res; 1988 Dec; 22(12):1137-63. PubMed ID: 3235457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High lubricious surface of cobalt-chromium-molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine).
    Kyomoto M; Iwasaki Y; Moro T; Konno T; Miyaji F; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K
    Biomaterials; 2007 Jul; 28(20):3121-30. PubMed ID: 17416412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of couple/crevice corrosion by prosthetic alloys under in vivo conditions.
    Rostoker W; Galante JO; Lereim P
    J Biomed Mater Res; 1978 Nov; 12(6):823-9. PubMed ID: 739015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation.
    Hallab NJ; Mikecz K; Vermes C; Skipor A; Jacobs JJ
    Mol Cell Biochem; 2001 Jun; 222(1-2):127-36. PubMed ID: 11678594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of mucine, IgA, urea, and lysozyme on the corrosion behavior of various non-precious dental alloys and pure titanium in artificial saliva.
    Bilhan H; Bilgin T; Cakir AF; Yuksel B; Von Fraunhofer JA
    J Biomater Appl; 2007 Nov; 22(3):197-221. PubMed ID: 17255155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of commercially pure titanium and alternative dental alloys on the marginal fit of one-piece cast implant frameworks.
    de Torres EM; Rodrigues RC; de Mattos Mda G; Ribeiro RF
    J Dent; 2007 Oct; 35(10):800-5. PubMed ID: 17825466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The haemolytic action of particulate metals (Cd, Cr, Co, Fe, Mo, Ni, Ta, Ti, Zn, Co-Cr alloy).
    Rae T
    J Pathol; 1978 Jun; 125(2):81-9. PubMed ID: 722392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface reaction layer on grindability of cast titanium alloys.
    Ohkubo C; Hosoi T; Ford JP; Watanabe I
    Dent Mater; 2006 Mar; 22(3):268-74. PubMed ID: 16083955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of metal conditioners to improve bond strengths of autopolymerizing denture base resin to cast Ti-6Al-7Nb and Co-Cr.
    Shimizu H; Kurtz KS; Tachii Y; Takahashi Y
    J Dent; 2006 Feb; 34(2):117-22. PubMed ID: 15994000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading.
    Vásquez VZ; Ozcan M; Kimpara ET
    Dent Mater; 2009 Feb; 25(2):221-31. PubMed ID: 18718654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.