These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12775906)

  • 21. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production.
    Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R
    J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic modes of vocal tract articulation for American English vowels.
    Story BH
    J Acoust Soc Am; 2005 Dec; 118(6):3834-59. PubMed ID: 16419828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulated production of vowel-like LX-waveforms and spectral damping in the absence of phonation.
    Moore C; Jones S
    Med Eng Phys; 2002; 24(7-8):461-5. PubMed ID: 12237040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of glottal area discontinuities on block-type vocal fold models with asymmetric tissue properties.
    Sommer DE; Erath BD; Zañartu M; Peterson SD
    J Acoust Soc Am; 2013 Mar; 133(3):EL214-20. PubMed ID: 23464131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.
    Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D
    J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements.
    de Mul FF; George NA; Qiu Q; Rakhorst G; Schutte HK
    Phys Med Biol; 2009 Jul; 54(13):3955-77. PubMed ID: 19494425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation.
    Fleischer M; Mainka A; Kürbis S; Birkholz P
    PLoS One; 2018; 13(3):e0193708. PubMed ID: 29543829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the role of glottis-interior sources in the production of voiced sound.
    Howe MS; McGowan RS
    J Acoust Soc Am; 2012 Feb; 131(2):1391-400. PubMed ID: 22352512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laryngeal flow due to longitudinal sweeping motion of the vocal folds and its contribution to auto-oscillation.
    Boutin H; Smith J; Wolfe J
    J Acoust Soc Am; 2015 Jul; 138(1):146-9. PubMed ID: 26233015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT; Ternström S; Svec JG
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Miminal subglottic pressure associated with vocal cord vibration].
    Dejonckere P
    Electrodiagn Ther; 1978; 15(2):67-9. PubMed ID: 679879
    [No Abstract]   [Full Text] [Related]  

  • 35. Glottal source-vocal tract interaction.
    Koizumi T; Taniguchi S; Hiromitsu S
    J Acoust Soc Am; 1985 Nov; 78(5):1541-7. PubMed ID: 4067067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aspects of voice irregularity measurement in connected speech.
    Fourcin A
    Folia Phoniatr Logop; 2009; 61(3):126-36. PubMed ID: 19571547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer model to characterize the air volume displaced by the vibrating vocal cords.
    Flanagan JL; Ishizaka K
    J Acoust Soc Am; 1978 May; 63(5):1559-65. PubMed ID: 690335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency response of the skin on the head and neck during production of selected speech sounds.
    Munger JB; Thomson SL
    J Acoust Soc Am; 2008 Dec; 124(6):4001-12. PubMed ID: 19206823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C; Mahshie J
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Glottic vibrations and micro-fluctuations of the aerial phonetic output].
    Sneppe R; Dejonckere P
    Electrodiagn Ther; 1976; 13(3):69-73. PubMed ID: 1001234
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.