BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12775910)

  • 1. Required test duration for group comparisons in ligament viscoelasticity: a statistical approach.
    Manley E; Provenzano PP; Heisey D; Lakes R; Vanderby R
    Biorheology; 2003; 40(4):441-50. PubMed ID: 12775910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress relaxation and recovery in tendon and ligament: experiment and modeling.
    Duenwald SE; Vanderby R; Lakes RS
    Biorheology; 2010; 47(1):1-14. PubMed ID: 20448294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On modelling nonlinear viscoelastic effects in ligaments.
    Peña E; Peña JA; Doblaré M
    J Biomech; 2008 Aug; 41(12):2659-66. PubMed ID: 18672245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of nonlinear viscoelastic models to describe ligament behavior.
    Provenzano PP; Lakes RS; Corr DT; Vanderby R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):45-57. PubMed ID: 14586706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of refreezing on the viscoelastic and tensile properties of ligaments.
    Moon DK; Woo SL; Takakura Y; Gabriel MT; Abramowitch SD
    J Biomech; 2006; 39(6):1153-7. PubMed ID: 16549103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.
    Craiem D; Rojo FJ; Atienza JM; Armentano RL; Guinea GV
    Phys Med Biol; 2008 Sep; 53(17):4543-54. PubMed ID: 18677037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cytoskeletal components in stress-relaxation behavior of adherent vascular smooth muscle cells.
    Hemmer JD; Nagatomi J; Wood ST; Vertegel AA; Dean D; Laberge M
    J Biomech Eng; 2009 Apr; 131(4):041001. PubMed ID: 19275430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-linear viscoelastic characterization of human hip ligaments.
    Kemper AR; McNally C; Smith B; Duma SM
    Biomed Sci Instrum; 2007; 43():324-9. PubMed ID: 17487102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear stress relaxation of dental ceramics determined from creep behavior.
    DeHoff PH; Anusavice KJ
    Dent Mater; 2004 Oct; 20(8):717-25. PubMed ID: 15302452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model.
    Defrate LE; Li G
    Biomech Model Mechanobiol; 2007 Jul; 6(4):245-51. PubMed ID: 16941137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall.
    Nagatomi J; Toosi KK; Chancellor MB; Sacks MS
    Biomech Model Mechanobiol; 2008 Oct; 7(5):395-404. PubMed ID: 17690929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the effect of hydration upon the properties of ligaments using pseudo Gaussian stress stimuli.
    Hoffman AH; Robichaud DR; Duquette JJ; Grigg P
    J Biomech; 2005 Aug; 38(8):1636-42. PubMed ID: 15958221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic studies of human subscapularis tendon: relaxation test and a Wiechert model.
    Machiraju C; Phan AV; Pearsall AW; Madanagopal S
    Comput Methods Programs Biomed; 2006 Jul; 83(1):29-33. PubMed ID: 16824643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma.
    Nguyen TD; Jones RE; Boyce BL
    J Biomech Eng; 2008 Aug; 130(4):041020. PubMed ID: 18601462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.