These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12776999)

  • 1. Boundary layer scattering measurements with a charge-coupled device camera lidar.
    Barnes JE; Bronner S; Beck R; Parikh NC
    Appl Opt; 2003 May; 42(15):2647-52. PubMed ID: 12776999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric aerosol profiling with a bistatic imaging lidar system.
    Barnes JE; Sharma NC; Kaplan TB
    Appl Opt; 2007 May; 46(15):2922-9. PubMed ID: 17514239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.
    Barnes JE; Sharma NC
    J Air Waste Manag Assoc; 2012 Feb; 62(2):198-203. PubMed ID: 22442935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar.
    Tao Z; Liu D; Wang Z; Ma X; Zhang Q; Xie C; Bo G; Hu S; Wang Y
    Opt Express; 2014 Jan; 22(1):1127-34. PubMed ID: 24515072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bistatic imaging lidar technique for upper atmospheric studies.
    Welsh BM; Gardner CS
    Appl Opt; 1989 Jan; 28(1):82-8. PubMed ID: 20548430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system.
    Bian Y; Xu W; Hu Y; Tao J; Kuang Y; Zhao C
    Opt Express; 2020 Mar; 28(5):6631-6647. PubMed ID: 32225907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements.
    Lazzarotto B; Frioud M; Larchevêque G; Mitev V; Quaglia P; Simeonov V; Thompson A; van den Bergh H; Calpini B
    Appl Opt; 2001 Jun; 40(18):2985-97. PubMed ID: 18357316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mini-Scheimpflug lidar system for all-day atmospheric remote sensing in the boundary layer.
    Mei L; Li Y; Kong Z; Ma T; Zhang Z; Fei R; Cheng Y; Gong Z; Liu K
    Appl Opt; 2020 Aug; 59(22):6729-6736. PubMed ID: 32749378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory.
    Vasilyev OB; Leyva A; Muhila A; Valdes M; Peralta R; Kovalenko AP; Welch RM; Berendes TA; Isakov VY; Kulikovskiy YP; Sokolov SS; Strepanov NN; Gulidov SS; von Hoyningen-Huene W
    Appl Opt; 1995 Jul; 34(21):4426-36. PubMed ID: 21052277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on Automatic Identification of Aerosols Boundary Layer Height with Local Optimum Model Based on Lidar Data].
    Teng JY; Qin K; Wang YJ; Lin LX; Sun XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):361-7. PubMed ID: 30264962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere.
    Meki K; Yamaguchi K; Li X; Saito Y; Kawahara TD; Nomura A
    Opt Lett; 1996 Sep; 21(17):1318-20. PubMed ID: 19876338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects.
    Cadalli N; Munson DC; Singer AC
    Appl Opt; 2002 Jun; 41(18):3638-49. PubMed ID: 12078691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers.
    Chazette P; Pelon J; Mégie G
    Appl Opt; 2001 Jul; 40(21):3428-40. PubMed ID: 18360368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral scanning Raman scattering lidar for accurate measurement of atmospheric temperature and water vapor from ground to height of interest.
    Yang F; Gao F; Zhang C; Li X; Gao X; Hua D; Wang L; Xin W; Stanič S
    Opt Lett; 2023 May; 48(10):2595-2598. PubMed ID: 37186717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual CCD detection method to retrieve aerosol extinction coefficient profile.
    Lian S; Bian Y; Zhao G; Li W; Zhao C
    Opt Express; 2019 Sep; 27(20):A1529-A1543. PubMed ID: 31684504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bistatic lidar measurements of clouds in the Nordic Arctic region.
    Olofson KF; Witt G; Pettersson JB
    Appl Opt; 2008 Sep; 47(26):4777-86. PubMed ID: 18784783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.
    Witschas B; Lemmerz C; Reitebuch O
    Opt Lett; 2014 Apr; 39(7):1972-5. PubMed ID: 24686652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.
    Aspey RA; McDermid IS; Leblanc T; Howe JW; Walsh TD
    Rev Sci Instrum; 2008 Sep; 79(9):094502. PubMed ID: 19044439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements.
    Liu ZS; Bi DC; Song XQ; Xia JB; Li RZ; Wang ZJ; She CY
    Opt Lett; 2009 Sep; 34(18):2712-4. PubMed ID: 19756080
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.