BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12777013)

  • 1. Remote-sensing reflectance in the Beaufort and Chukchi seas: observations and models.
    Wang J; Cota GF
    Appl Opt; 2003 May; 42(15):2754-65. PubMed ID: 12777013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrieval of chlorophyll from remote-sensing reflectance in the china seas.
    He MX; Liu ZS; Du KP; Li LP; Chen R; Carder KL; Lee ZP
    Appl Opt; 2000 May; 39(15):2467-74. PubMed ID: 18345161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia.
    Dupouy C; Neveux J; Ouillon S; Frouin R; Murakami H; Hochard S; Dirberg G
    Mar Pollut Bull; 2010; 61(7-12):503-18. PubMed ID: 20688344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model for the interpretation of hyperspectral remote-sensing reflectance.
    Lee Z; Carder KL; Hawes SK; Steward RG; Peacock TG; Davis CO
    Appl Opt; 1994 Aug; 33(24):5721-32. PubMed ID: 20935974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes.
    Xue K; Boss E; Ma R; Shen M
    Appl Opt; 2019 Nov; 58(31):8549-8564. PubMed ID: 31873359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front.
    D'Sa EJ; Miller RL; Del Castillo C
    Appl Opt; 2006 Oct; 45(28):7410-28. PubMed ID: 16983431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a reflectance model used in the SeaWiFS ocean color algorithm: implications for chlorophyll concentration retrievals.
    Yan B; Stamnes K; Toratani M; Li W; Stamnes JJ
    Appl Opt; 2002 Oct; 41(30):6243-59. PubMed ID: 12396176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results.
    Dall'Olmo G; Gitelson AA
    Appl Opt; 2006 May; 45(15):3577-92. PubMed ID: 16708105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.
    Gonçalves-Araujo R; Rabe B; Peeken I; Bracher A
    PLoS One; 2018; 13(1):e0190838. PubMed ID: 29304182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model.
    Pierson DC; Strömbeck N
    Sci Total Environ; 2001 Mar; 268(1-3):171-88. PubMed ID: 11315739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical characterization of marine phytoplankton assemblages within surface waters of the western Arctic Ocean.
    Reynolds RA; Stramski D
    Limnol Oceanogr; 2019 Nov; 64(6):2478-2496. PubMed ID: 31894158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.
    Wei J; Lee Z
    Appl Opt; 2015 Feb; 54(4):636-49. PubMed ID: 25967770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters.
    Strömbeck N; Pierson DC
    Sci Total Environ; 2001 Mar; 268(1-3):123-37. PubMed ID: 11315736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical assessment of particle size and composition in the Santa Barbara Channel, California.
    Kostadinov TS; Siegel DA; Maritorena S; Guillocheau N
    Appl Opt; 2012 Jun; 51(16):3171-89. PubMed ID: 22695548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
    Simis SG; Ylöstalo P; Kallio KY; Spilling K; Kutser T
    PLoS One; 2017; 12(4):e0173357. PubMed ID: 28384157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurements.
    Chang GC; Gould RW
    Opt Express; 2006 Oct; 14(22):10149-63. PubMed ID: 19529411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.
    Dierssen HM
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters.
    Alvain S; Loisel H; Dessailly D
    Opt Express; 2012 Jan; 20(2):1070-83. PubMed ID: 22274453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.