These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12777095)

  • 21. Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation.
    Liao W; Ning Z; Chen L; Wei Q; Yuan E; Yang J; Ren J
    J Agric Food Chem; 2014 Aug; 62(34):8648-54. PubMed ID: 25075433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative modification of citrate synthase by peroxyl radicals and protection with novel antioxidants.
    Chepelev NL; Bennitz JD; Wright JS; Smith JC; Willmore WG
    J Enzyme Inhib Med Chem; 2009 Dec; 24(6):1319-31. PubMed ID: 19795928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of gallic acid and its esters on 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes.
    Ximenes VF; Lopes MG; Petrônio MS; Regasini LO; Silva DH; da Fonseca LM
    J Agric Food Chem; 2010 May; 58(9):5355-62. PubMed ID: 20397726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exogenous glutathione is essential in the testing of antioxidant capacity using radical-induced haemolysis.
    Jani N; Ziogas J; Angus JA; Wright CE
    J Pharmacol Toxicol Methods; 2012; 65(3):142-6. PubMed ID: 22507255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of triiodothyronine-induced hyperthyroidism on lipid peroxidation, erythrocyte resistance and iron-binding and iron-oxidizing antioxidant properties of plasma in the rabbit.
    Brzezińska-Slebodzińska E
    Vet Res Commun; 2005 Nov; 29(8):661-70. PubMed ID: 16369880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The haemolytic effect of phallolysin.
    Seeger R; Burkhardt M; Haupt M; Feulner L
    Naunyn Schmiedebergs Arch Pharmacol; 1976 May; 293(2):163-70. PubMed ID: 8736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The kinetics of malonamide-induced haemolysis of mammalian erythrocytes. I. The Arrhenius activation parameters.
    Coldman MF; Good W
    Biochim Biophys Acta; 1968 Mar; 150(2):194-205. PubMed ID: 5641889
    [No Abstract]   [Full Text] [Related]  

  • 28. Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes.
    Wang J; Sun B; Cao Y; Tian Y
    Food Chem Toxicol; 2009 Jul; 47(7):1591-9. PubMed ID: 19371769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The kinetics of malonamide-induced haemolysis of mammalian erythrocytes. II. The Eyring activation parameters.
    Coldman MF; Good W
    Biochim Biophys Acta; 1968 Mar; 150(2):206-13. PubMed ID: 5641890
    [No Abstract]   [Full Text] [Related]  

  • 30. Antioxidant activity of sugarcane molasses against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced peroxyl radicals.
    Asikin Y; Takahashi M; Mishima T; Mizu M; Takara K; Wada K
    Food Chem; 2013 Nov; 141(1):466-72. PubMed ID: 23768381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NADH-generating substrates reduce peroxyl radical toxicity in RL-34 cells.
    Antosiewicz J; Spodnik JH; Teranishi M; Herman-Antosiewicz A; Kurono Ch; Soji T; Woźniak M; Borkowska A; Wakabayashi T
    Folia Morphol (Warsz); 2009 Nov; 68(4):247-55. PubMed ID: 19950075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protective effects of glucosamine hydrochloride against free radical-induced erythrocytes damage.
    Jamialahmadi K; Arasteh O; Matbou Riahi M; Mehri S; Riahi-Zanjani B; Karimi G
    Environ Toxicol Pharmacol; 2014 Jul; 38(1):212-9. PubMed ID: 24959958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes.
    Magalhães AS; Silva BM; Pereira JA; Andrade PB; Valentão P; Carvalho M
    Food Chem Toxicol; 2009 Jun; 47(6):1372-7. PubMed ID: 19306906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large differences in erythrocyte stability between species reflect different antioxidative defense mechanisms.
    Stagsted J; Young JF
    Free Radic Res; 2002 Jul; 36(7):779-89. PubMed ID: 12180129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative effects of phosphoenolpyruvate on selected mammalian erythrocytes.
    Scott RL; Sohmer PR
    Comp Biochem Physiol A Comp Physiol; 1982; 72(4):737-40. PubMed ID: 6126310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of carboxymethylated pyridoindoles on free radical-induced haemolysis of rat erythrocytes in vitro.
    Juskova M; Snirc V; Krizanova L; Stefek M
    Acta Biochim Pol; 2010; 57(2):153-6. PubMed ID: 20066176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indole and its alkyl-substituted derivatives protect erythrocyte and DNA against radical-induced oxidation.
    Zhao F; Liu ZQ
    J Biochem Mol Toxicol; 2009; 23(4):273-9. PubMed ID: 19705360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into the free-radical-scavenging mechanism of hydroxyl-substituent Schiff bases in the free-radical-induced hemolysis of erythrocytes.
    Tang YZ; Liu ZQ
    Cell Biochem Funct; 2007; 25(6):701-10. PubMed ID: 17044123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antioxidative effect of melatonin on DNA and erythrocytes against free-radical-induced oxidation.
    Zhao F; Liu ZQ; Wu D
    Chem Phys Lipids; 2008 Feb; 151(2):77-84. PubMed ID: 17996197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitory effects of Keishi-bukuryo-gan on free radical induced lysis of rat red blood cells.
    Sekiya N; Goto H; Shimada Y; Terasawa K
    Phytother Res; 2002 Jun; 16(4):373-6. PubMed ID: 12112296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.