BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 12777473)

  • 21. Cytochrome P450 27A1 Deficiency and Regional Differences in Brain Sterol Metabolism Cause Preferential Cholestanol Accumulation in the Cerebellum.
    Mast N; Anderson KW; Lin JB; Li Y; Turko IV; Tatsuoka C; Bjorkhem I; Pikuleva IA
    J Biol Chem; 2017 Mar; 292(12):4913-4924. PubMed ID: 28190002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Side chain hydroxylations in bile acid biosynthesis catalyzed by CYP3A are markedly up-regulated in Cyp27-/- mice but not in cerebrotendinous xanthomatosis.
    Honda A; Salen G; Matsuzaki Y; Batta AK; Xu G; Leitersdorf E; Tint GS; Erickson SK; Tanaka N; Shefer S
    J Biol Chem; 2001 Sep; 276(37):34579-85. PubMed ID: 11454857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of regulatory oxysterols: 26-hydroxylation of cholesterol by ovarian mitochondria.
    Rennert H; Fischer RT; Alvarez JG; Trzaskos JM; Strauss JF
    Endocrinology; 1990 Aug; 127(2):738-46. PubMed ID: 2373053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholesterol is converted to 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in liver mitochondria. Evidence for a mitochondrial sterol 7 alpha-hydroxylase.
    Axelson M; Shoda J; Sjövall J; Toll A; Wikvall K
    J Biol Chem; 1992 Jan; 267(3):1701-4. PubMed ID: 1730713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competitive inhibition of bile acid synthesis by endogenous cholestanol and sitosterol in sitosterolemia with xanthomatosis. Effect on cholesterol 7 alpha-hydroxylase.
    Shefer S; Salen G; Nguyen L; Batta AK; Packin V; Tint GS; Hauser S
    J Clin Invest; 1988 Dec; 82(6):1833-9. PubMed ID: 3143743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor.
    Goodwin B; Gauthier KC; Umetani M; Watson MA; Lochansky MI; Collins JL; Leitersdorf E; Mangelsdorf DJ; Kliewer SA; Repa JJ
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):223-8. PubMed ID: 12509506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 25R,26-Hydroxycholesterol revisited: synthesis, metabolism, and biologic roles.
    Javitt NB
    J Lipid Res; 2002 May; 43(5):665-70. PubMed ID: 11971935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel route for the biosynthesis of cholestanol, and its significance for the pathogenesis of cerebrotendinous xanthomatosis.
    Skrede S; Bjørkhem I
    Scand J Clin Lab Invest Suppl; 1985; 177():15-21. PubMed ID: 3865344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bile acid synthesis: 7 alpha-hydroxylation of intermediates in the sterol 27-hydroxylase metabolic pathway.
    Lee C; Martin KO; Javitt NB
    J Lipid Res; 1996 Jun; 37(6):1356-62. PubMed ID: 8808770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies of the mechanism of the increased biosynthesis of cholestanol in cerebrotendinous xanthomatosis. The activity of delta 5-3 beta-hydroxysteroid dehydrogenase.
    Buchmann MS; Björkhem I; Fausa O; Skrede S
    Scand J Gastroenterol; 1985 Dec; 20(10):1262-6. PubMed ID: 3868019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inverse relationship between plasma cholestanol concentrations and bile acid synthesis in sitosterolemia.
    Salen G; Batta AK; Tint GS; Shefer S; Ness GC
    J Lipid Res; 1994 Oct; 35(10):1878-87. PubMed ID: 7852865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hepatic 7 alpha-dehydroxylation of bile acid intermediates, and its significance for the pathogenesis of cerebrotendinous xanthomatosis.
    Skrede S; Buchmann MS; Björkhem I
    J Lipid Res; 1988 Feb; 29(2):157-64. PubMed ID: 3367085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesis of cholestanol from bile acid intermediates in the rabbit and the rat.
    Skrede S; Björkhem I; Buchmann MS; Midtvedt T
    J Biol Chem; 1985 Jan; 260(1):77-81. PubMed ID: 3917436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosynthesis of bile acids in man. Hydroxylation of the C27-steroid side chain.
    Björkhem I; Gustafsson J; Johansson G; Persson B
    J Clin Invest; 1975 Mar; 55(3):478-86. PubMed ID: 1117065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Five decades with oxysterols.
    Björkhem I
    Biochimie; 2013 Mar; 95(3):448-54. PubMed ID: 23111110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biologic role(s) of the 25(R),26-hydroxycholesterol metabolic pathway.
    Javitt NB
    Biochim Biophys Acta; 2000 Dec; 1529(1-3):136-41. PubMed ID: 11111083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rabbit liver contains one major sterol 12alpha-hydroxylase with broad substrate specificity.
    Andersson U; Eggertsen G; Björkhem I
    Biochim Biophys Acta; 1998 Jan; 1389(2):150-4. PubMed ID: 9461256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Could steroids mask the diagnosis of cerebrotendinous xanthomatosis?
    Siman-Tov T; Meiner V; Gadoth N
    J Neurol Sci; 2006 Apr; 243(1-2):83-6. PubMed ID: 16445943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxysterol biosynthetic enzymes.
    Russell DW
    Biochim Biophys Acta; 2000 Dec; 1529(1-3):126-35. PubMed ID: 11111082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification of a 3beta-hydroxy-delta5-C27-steroid dehydrogenase from pig liver microsomes active in major and alternative pathways of bile acid biosynthesis.
    Furster C; Zhang J; Toll A
    J Biol Chem; 1996 Aug; 271(34):20903-7. PubMed ID: 8702847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.