BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 12777513)

  • 1. Antiquity and evolution of the MADS-box gene family controlling flower development in plants.
    Nam J; dePamphilis CW; Ma H; Nei M
    Mol Biol Evol; 2003 Sep; 20(9):1435-47. PubMed ID: 12777513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flower development and evolution: gene duplication, diversification and redeployment.
    Irish VF; Litt A
    Curr Opin Genet Dev; 2005 Aug; 15(4):454-60. PubMed ID: 15964755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MADS-box genes are involved in floral development and evolution.
    Saedler H; Becker A; Winter KU; Kirchner C; Theissen G
    Acta Biochim Pol; 2001; 48(2):351-8. PubMed ID: 11732606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa.
    Leseberg CH; Li A; Kang H; Duvall M; Mao L
    Gene; 2006 Aug; 378():84-94. PubMed ID: 16831523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Chen MK; Lin IC; Yang CH
    Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression.
    Soltis DE; Ma H; Frohlich MW; Soltis PS; Albert VA; Oppenheimer DG; Altman NS; dePamphilis C; Leebens-Mack J
    Trends Plant Sci; 2007 Aug; 12(8):358-67. PubMed ID: 17658290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analyses of genetic pathways controlling petal specification in poppy.
    Drea S; Hileman LC; de Martino G; Irish VF
    Development; 2007 Dec; 134(23):4157-66. PubMed ID: 17959716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function and evolution of the plant MADS-box gene family.
    Ng M; Yanofsky MF
    Nat Rev Genet; 2001 Mar; 2(3):186-95. PubMed ID: 11256070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
    Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G
    Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants.
    De Bodt S; Raes J; Florquin K; Rombauts S; Rouzé P; Theissen G; Van de Peer Y
    J Mol Evol; 2003 May; 56(5):573-86. PubMed ID: 12698294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications.
    Shan H; Zahn L; Guindon S; Wall PK; Kong H; Ma H; DePamphilis CW; Leebens-Mack J
    Mol Biol Evol; 2009 Oct; 26(10):2229-44. PubMed ID: 19578156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid.
    Tsai WC; Kuoh CS; Chuang MH; Chen WH; Chen HH
    Plant Cell Physiol; 2004 Jul; 45(7):831-44. PubMed ID: 15295066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MADS about the evolution of orchid flowers.
    Mondragón-Palomino M; Theissen G
    Trends Plant Sci; 2008 Feb; 13(2):51-9. PubMed ID: 18262819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.
    Ciannamea S; Kaufmann K; Frau M; Tonaco IA; Petersen K; Nielsen KK; Angenent GC; Immink RG
    J Exp Bot; 2006; 57(13):3419-31. PubMed ID: 17005923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions.
    Lü S; Du X; Lu W; Chong K; Meng Z
    Evol Dev; 2007; 9(1):92-104. PubMed ID: 17227369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MADS-box genes and floral development: the dark side.
    Heijmans K; Morel P; Vandenbussche M
    J Exp Bot; 2012 Sep; 63(15):5397-404. PubMed ID: 22915743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.