These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 12777624)
1. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Archibald JM; Rogers MB; Toop M; Ishida K; Keeling PJ Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7678-83. PubMed ID: 12777624 [TBL] [Abstract][Full Text] [Related]
2. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439 [TBL] [Abstract][Full Text] [Related]
3. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. Yang Y; Matsuzaki M; Takahashi F; Qu L; Nozaki H PLoS One; 2014; 9(6):e101158. PubMed ID: 24972019 [TBL] [Abstract][Full Text] [Related]
5. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489 [TBL] [Abstract][Full Text] [Related]
6. Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans. Rogers MB; Archibald JM; Field MA; Li C; Striepen B; Keeling PJ J Eukaryot Microbiol; 2004; 51(5):529-35. PubMed ID: 15537087 [TBL] [Abstract][Full Text] [Related]
7. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Hirakawa Y; Burki F; Keeling PJ Eukaryot Cell; 2012 Mar; 11(3):324-33. PubMed ID: 22267775 [TBL] [Abstract][Full Text] [Related]
8. Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. Tanifuji G; Onodera NT; Brown MW; Curtis BA; Roger AJ; Ka-Shu Wong G; Melkonian M; Archibald JM BMC Genomics; 2014 May; 15(1):374. PubMed ID: 24885563 [TBL] [Abstract][Full Text] [Related]
10. The endosymbiotic origin, diversification and fate of plastids. Keeling PJ Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341 [TBL] [Abstract][Full Text] [Related]
11. Plastids and protein targeting. McFadden GI J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382 [TBL] [Abstract][Full Text] [Related]
12. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus. Gilson PR; Su V; Slamovits CH; Reith ME; Keeling PJ; McFadden GI Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9566-71. PubMed ID: 16760254 [TBL] [Abstract][Full Text] [Related]
13. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Jackson C; Knoll AH; Chan CX; Verbruggen H Sci Rep; 2018 Jan; 8(1):1523. PubMed ID: 29367699 [TBL] [Abstract][Full Text] [Related]
14. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228 [TBL] [Abstract][Full Text] [Related]
15. Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Deane JA; Fraunholz M; Su V; Maier U-G ; Martin W; Durnford DG; McFadden GI Protist; 2000 Oct; 151(3):239-52. PubMed ID: 11079769 [TBL] [Abstract][Full Text] [Related]
16. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
18. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Frommolt R; Werner S; Paulsen H; Goss R; Wilhelm C; Zauner S; Maier UG; Grossman AR; Bhattacharya D; Lohr M Mol Biol Evol; 2008 Dec; 25(12):2653-67. PubMed ID: 18799712 [TBL] [Abstract][Full Text] [Related]
19. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Li S; Nosenko T; Hackett JD; Bhattacharya D Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039 [TBL] [Abstract][Full Text] [Related]
20. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]