These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 1277806)

  • 41. Comparison of red pigment-concentrating hormones from the eyestalks of the fiddler crab, Uca pugilator, and the prawn, Palaemonetes vulgaris, with synthetic red pigment-concentrating hormone of Pandalus borealis.
    Fingerman M; Fingerman SW; Hammond RD
    Gen Comp Endocrinol; 1974 May; 23(1):124-6. PubMed ID: 4828876
    [No Abstract]   [Full Text] [Related]  

  • 42. Effect of 5-hydroxytryptamine antibodies on pigment migration in the erythrophores of the fiddler crab, Uca pugilator: further evidence for 5-hydroxytryptamine as a neurotransmitter that stimulates release of red pigment-dispersing hormone.
    Hanumante MM; Butler TA; Fingerman M
    Experientia; 1984 Jul; 40(7):740-1. PubMed ID: 6745407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proceedings: Extracellular space changes in Carcinus maenas during adaptation to low environmental salinity.
    Harris RR
    J Physiol; 1976 Jun; 258(1):31P-32P. PubMed ID: 940069
    [No Abstract]   [Full Text] [Related]  

  • 44. Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function?
    Rivera-Ingraham GA; Barri K; Boël M; Farcy E; Charles AL; Geny B; Lignot JH
    J Exp Biol; 2016 Jan; 219(Pt 1):80-9. PubMed ID: 26567341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of zinc on molting and body weight of the estuarine crab Neohelice granulata (Brachyura: Varunidae).
    Beltrame MO; De Marco SG; Marcovecchio JE
    Sci Total Environ; 2010 Jan; 408(3):531-6. PubMed ID: 19903568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis. I. Cardiovascular and respiratory responses.
    McGaw IJ
    J Exp Biol; 2006 Oct; 209(Pt 19):3766-76. PubMed ID: 16985193
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perfusion of gills isolated from the hyper-hyporegulating crab Pachygrapsus marmoratus (Crustacea, Decapoda): adaptation of a method.
    Pierrot C; Pequeux A; Thuet P
    Arch Physiol Biochem; 1995 Aug; 103(4):401-9. PubMed ID: 8548473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja.
    Munro C; Morris JP; Brown A; Hauton C; Thatje S
    Proc Biol Sci; 2015 Jun; 282(1809):20150577. PubMed ID: 26041343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Behavioral influences on the physiological responses of Cancer gracilis, the graceful crab, during hyposaline exposure.
    Curtis DL; Jensen EK; McGaw IJ
    Biol Bull; 2007 Jun; 212(3):222-31. PubMed ID: 17565111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of dopamine and acclimation to reduced salinity on the concentration of cyclic AMP in the gills of the green crab, Carcinus maenas (L).
    Sommer MJ; Mantel LH
    Gen Comp Endocrinol; 1991 Jun; 82(3):364-8. PubMed ID: 1652531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Kinetic parameters of Na,K-ATPase in the gills of crabs adapted to freshened sea water].
    Busev VM; Semen'kov PG
    Biokhimiia; 1979 Nov; 44(11):2048-52. PubMed ID: 232667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of red tide (Karenia brevis) on reflex impairment and mortality of sublegal Florida stone crabs, Menippe mercenaria.
    Gravinese PM; Kronstadt SM; Clemente T; Cole C; Blum P; Henry MS; Pierce RH; Lovko VJ
    Mar Environ Res; 2018 Jun; 137():145-148. PubMed ID: 29571587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Short- and long-term, salinity-induced modulation of V-ATPase activity in the posterior gills of the true freshwater crab, Dilocarcinus pagei (Brachyura, Trichodactylidae).
    Firmino KC; Faleiros RO; Masui DC; McNamara JC; Furriel RP
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Sep; 160(1):24-31. PubMed ID: 21616159
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Red Sea species of Cymo de Haan, 1833 (Decapoda, Brachyura, Xanthidae), associates of scleractinian corals.
    Brösing A; Al-Aidaroos AM; Türkay M
    Zootaxa; 2014 Mar; 3779():195-214. PubMed ID: 24871721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Behavior of chromatophores of the fiddler crab Uca pugilator and the dwarf crayfish Cambarellus shufeldti in response to synthetic Pandalus red pigment-concentrating hormone.
    Fingerman M
    Gen Comp Endocrinol; 1973 Jun; 20(3):589-92. PubMed ID: 4715241
    [No Abstract]   [Full Text] [Related]  

  • 56. Entrainment of bimodal circatidal rhythms in the shore crab Carcinus maenas.
    Reid DG; Naylor E
    J Biol Rhythms; 1990; 5(4):333-47. PubMed ID: 2133140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fiddler crabs.
    Zeil J; Hemmi JM; Backwell PR
    Curr Biol; 2006 Jan; 16(2):R40-1. PubMed ID: 16431353
    [No Abstract]   [Full Text] [Related]  

  • 58. The adaptive significance of crustacean hyperglycaemic hormone (CHH) in daily and seasonal migratory activities of the Christmas Island red crab Gecarcoidea natalis.
    Morris S; Postel U; Mrinalini ; Turner LM; Palmer J; Webster SG
    J Exp Biol; 2010 Sep; 213(Pt 17):3062-73. PubMed ID: 20709934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carotenoids in fish. XVIII--carotenoids in the brain of some fishes.
    Czeczuga B
    Folia Histochem Cytochem (Krakow); 1977; 15(4):343-6. PubMed ID: 598774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia.
    Sui Y; Hu M; Huang X; Wang Y; Lu W
    Mar Environ Res; 2015 Aug; 109():159-67. PubMed ID: 26210406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.