These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 127784)
1. Physiological suppression of a transport defect in Escherichia coli mutants deficient in Ca2+, Mg2+-stimulated adenosine triphosphatase. Boonstra J; Gutnick DL; Kaback HR J Bacteriol; 1975 Dec; 124(3):1248-55. PubMed ID: 127784 [TBL] [Abstract][Full Text] [Related]
2. Energy transduction in Escherichia coli. The effect of chaotropic agents on energy coupling in everted membrane vesicles from aerobic and anaerobic cultures. Hasan SM; Rosen BP Biochim Biophys Acta; 1977 Feb; 459(2):225-40. PubMed ID: 138439 [TBL] [Abstract][Full Text] [Related]
3. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli. Rosen BP J Bacteriol; 1973 Dec; 116(3):1124-9. PubMed ID: 4270946 [TBL] [Abstract][Full Text] [Related]
4. Energy coupling to active transport in anaerobically grown mutants of Escherichia Coli K12. Gutowski SJ; Rosenberg H Biochem J; 1976 Mar; 154(3):731-4. PubMed ID: 133673 [TBL] [Abstract][Full Text] [Related]
5. The role of the carbodiimide-reactive component of the adenosine-5'-triphosphatase complex in the proton permeability of Escherichia coli membrane vesicles. Patel L; Kaback HR Biochemistry; 1976 Jun; 15(13):2741-6. PubMed ID: 132963 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Singh AP; Bragg PD Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924 [TBL] [Abstract][Full Text] [Related]
7. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations. Rae AS; Strickland KP Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192 [TBL] [Abstract][Full Text] [Related]
8. Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex. Fillingame RH; Knoebel K; Wopat AE J Bacteriol; 1978 Nov; 136(2):570-81. PubMed ID: 152309 [TBL] [Abstract][Full Text] [Related]
9. Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase. Simoni RD; Shandell A J Biol Chem; 1975 Dec; 250(24):9421-7. PubMed ID: 127796 [TBL] [Abstract][Full Text] [Related]
10. Active transport in mutants of Escherichia coli with alterations in the membrane ATPase complex. Or A; Kanner BI; Gutnick DL FEBS Lett; 1973 Sep; 35(2):217-9. PubMed ID: 4270368 [No Abstract] [Full Text] [Related]
11. Energy transduction in Escherichia coli. The role of the Mg2+ATPase. Tsuchiya T; Rosen BP J Biol Chem; 1975 Nov; 250(21):8409-15. PubMed ID: 127791 [TBL] [Abstract][Full Text] [Related]
12. Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphatase. Altendorf K; Harold FM; Simoni RD J Biol Chem; 1974 Jul; 249(14):4587-93. PubMed ID: 4276462 [No Abstract] [Full Text] [Related]
13. Relationship between the F0F1-ATPase and the K(+)-transport system within the membrane of anaerobically grown Escherichia coli. N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K(+)-transport. Trchounian AA; Vassilian AV J Bioenerg Biomembr; 1994 Oct; 26(5):563-71. PubMed ID: 7896771 [TBL] [Abstract][Full Text] [Related]
14. Restoration of active calcium transport in vesicles of an Mg2+-ATPase mutant of Escherichia coli by wild-type Mg2+-ATPase. Tsuchiya T; Rosen BP Biochem Biophys Res Commun; 1975 Apr; 63(4):832-8. PubMed ID: 124173 [No Abstract] [Full Text] [Related]
15. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. Berger EA; Heppel LA J Biol Chem; 1974 Dec; 249(24):7747-55. PubMed ID: 4279250 [No Abstract] [Full Text] [Related]
16. Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. Kanner BI; Gutnick DL J Bacteriol; 1972 Jul; 111(1):287-9. PubMed ID: 4273171 [TBL] [Abstract][Full Text] [Related]
17. Adenosine 5'-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP J Bacteriol; 1976 Jul; 127(1):154-61. PubMed ID: 6430 [TBL] [Abstract][Full Text] [Related]
18. Energy coupling for methionine transport in Escherichia coli. Kadner RJ; Winkler HH J Bacteriol; 1975 Sep; 123(3):985-91. PubMed ID: 125747 [TBL] [Abstract][Full Text] [Related]
19. Energetics of glycylglycine transport in Escherichia coli. Cowell JL J Bacteriol; 1974 Oct; 120(1):139-46. PubMed ID: 4278690 [TBL] [Abstract][Full Text] [Related]
20. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate. Boonstra J; Sips HJ; Konings WN Eur J Biochem; 1976 Oct; 69(1):35-44. PubMed ID: 791648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]