These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12779126)

  • 1. The production of transgenic Scots pine (Pinus sylvestris L.) via the application of transformed pollen in controlled crossings.
    Aronen TS; Nikkanen TO; Häggman HM
    Transgenic Res; 2003 Jun; 12(3):375-8. PubMed ID: 12779126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons.
    Grant JE; Cooper PA; Dale TM
    Plant Cell Rep; 2004 Jul; 22(12):894-902. PubMed ID: 14986058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud.
    Tang W; Tian Y
    J Exp Bot; 2003 Feb; 54(383):835-44. PubMed ID: 12554726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable transformation of mature zygotic embryos and regeneration of transgenic plants of chir pine (Pinus roxbughii Sarg.).
    Parasharami VA; Naik VB; von Arnold S; Nadgauda RS; Clapham DH
    Plant Cell Rep; 2006 Jan; 24(12):708-14. PubMed ID: 16133348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and differentiation of transgenic callus regulated by phytohormones and antibiotics in transformation of loblolly pine.
    Tang W; Luo XY; Samuels V
    Yi Chuan Xue Bao; 2002 Feb; 29(2):166-74. PubMed ID: 11902001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.).
    Tang W
    Cell Res; 2001 Sep; 11(3):237-43. PubMed ID: 11642410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens.
    Tang W; Sederoff R; Whetten R
    Planta; 2001 Oct; 213(6):981-9. PubMed ID: 11722135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable transformation of embryogenic tissues of Pinus nigra Arn. using a biolistic method.
    Salaj T; Moravcíková J; Grec-Niquet L; Salaj J
    Biotechnol Lett; 2005 Jul; 27(13):899-903. PubMed ID: 16091883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards male sterility in Pinus radiata--a stilbene synthase approach to genetically engineer nuclear male sterility.
    Höfig KP; Möller R; Donaldson L; Putterill J; Walter C
    Plant Biotechnol J; 2006 May; 4(3):333-43. PubMed ID: 17147639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.
    Tang W; Newton RJ; Weidner DA
    J Exp Bot; 2007; 58(3):545-54. PubMed ID: 17158108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings.
    Kara F; Topaçoğlu O
    Environ Monit Assess; 2018 Nov; 190(12):749. PubMed ID: 30498861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methotrexate is a new selectable marker for tobacco immature pollen transformation.
    Aionesei T; Hosp J; Voronin V; Heberle-Bors E; Touraev A
    Plant Cell Rep; 2006 May; 25(5):410-6. PubMed ID: 16331457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating exotic gene flow into native pine stands: zygotic vs. gametic components.
    Unger GM; Vendramin GG; Robledo-Arnuncio JJ
    Mol Ecol; 2014 Nov; 23(22):5435-47. PubMed ID: 25277767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings.
    Laukkanen H; Soini H; Kontunen-Soppela S; Hohtola A; Viljanen M
    Tree Physiol; 2000 Jul; 20(13):915-20. PubMed ID: 11303582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris.
    Dvornyk V; Sirviö A; Mikkonen M; Savolainen O
    Mol Biol Evol; 2002 Feb; 19(2):179-88. PubMed ID: 11801746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene transfer via pollen-tube pathway for anti-fusarium wilt in watermelon.
    Chen WS; Chiu CC; Liu HY; Lee TL; Cheng JT; Lin CC; Wu YJ; Chang HY
    Biochem Mol Biol Int; 1998 Dec; 46(6):1201-9. PubMed ID: 9891853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal controlled crosses between Pinus sylvestris and P. mugo verified by a species-specific cpDNA marker.
    Wachowiak W; Lewandowski A; Prus-Głowacki W
    J Appl Genet; 2005; 46(1):41-3. PubMed ID: 15741663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollen-mediated transformation of Sorghum bicolor plants.
    Wang W; Wang J; Yang C; Li Y; Liu L; Xu J
    Biotechnol Appl Biochem; 2007 Oct; 48(Pt 2):79-83. PubMed ID: 17868021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient beta-glucuronidase expression in lily (Lilium longflorum L.) pollen via wounding-assisted Agrobacterium-mediated transformation.
    Kim SS; Shin DI; Park HS
    Biotechnol Lett; 2007 Jun; 29(6):965-9. PubMed ID: 17310322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland.
    Picon-Cochard C; Coll L; Balandier P
    Oecologia; 2006 Jun; 148(3):373-83. PubMed ID: 16489460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.