These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12779223)

  • 21. Selectivity tuning in chiral dual column gas chromatography.
    Krupcík J; Spánik I; Benická E; Zabka M; Welsch T; Armstrong DW
    J Chromatogr Sci; 2002 Oct; 40(9):483-8. PubMed ID: 12433108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.
    Kurganov AA; Korolev AA; Shiryaeva VE; Popova TP; Kanateva AY
    J Chromatogr A; 2013 Nov; 1315():162-6. PubMed ID: 24075013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On retentivity tuning by flow in the second column of different comprehensive two dimensional gas chromatographic configurations.
    Krupčík J; Májek P; Gorovenko R; Sandra P; Armstrong DW
    J Chromatogr A; 2011 May; 1218(21):3186-9. PubMed ID: 21489538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast gas chromatography: packed column solvating gas chromatography versus open tubular column gas chromatography.
    Wu N; Medina JC; Lee ML
    J Chromatogr A; 2000 Sep; 892(1-2):3-13. PubMed ID: 11045476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavior of short silica monolithic columns in high pressure gas chromatography.
    Maniquet A; Bruyer N; Raffin G; Baco-Antoniali F; Demesmay C; Dugas V; Randon J
    J Chromatogr A; 2016 Aug; 1460():153-9. PubMed ID: 27432790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a nitrogen-cooled, electrically heated cold trap inlet for high-speed gas chromatography.
    Mouradian RF; Levine SP; Sacks RD
    J Chromatogr Sci; 1990 Dec; 28(12):643-8. PubMed ID: 2292611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of silica nanoparticles for gas chromatographic separation.
    Na N; Cui X; De Beer T; Liu T; Tang T; Sajid M; Ouyang J
    J Chromatogr A; 2011 Jul; 1218(28):4552-8. PubMed ID: 21652043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relating pressure tuned coupled column ensembles with the solvation parameter model for tunable selectivity in gas chromatography.
    Sharif KM; Kulsing C; Chin ST; Marriott PJ
    J Chromatogr A; 2016 Jul; 1455():156-162. PubMed ID: 27302688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of gas chromatographic peak width in capillary columns at different temperatures, carrier gas flows, column lengths, inside diameters and carbon numbers.
    Krisnangkura K; Pongtonkulpanich V
    J Sep Sci; 2006 Jan; 29(1):81-9. PubMed ID: 16485712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-efficiency solvating gas chromatography using packed capillaries.
    Shen Y; Lee ML
    Anal Chem; 1997 Jul; 69(13):2541-9. PubMed ID: 21639388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation and prediction of the shape of gas chromatographic peaks.
    Moretti P; Vezzani S; Garrone E; Castello G
    J Chromatogr A; 2004 Jun; 1038(1-2):171-81. PubMed ID: 15233532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carrier gas as a new factor influencing the selectivity of the gas-stationary liquid phase chromatographic system.
    Berezkin VG; Zagainov VF; Ivanov PB
    J Chromatogr A; 2003 Jan; 985(1-2):57-62. PubMed ID: 12580470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow regime at ambient outlet pressure and its influence in comprehensive two-dimensional gas chromatography.
    Beens J; Janssen HG; Adahchour M; Brinkman UA
    J Chromatogr A; 2005 Sep; 1086(1-2):141-50. PubMed ID: 16130666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution to the time balance in gas-liquid chromatography new definition equations of the retention times and retention volumes.
    Santiuste JM; Takács JM
    J Chromatogr A; 2002 Aug; 966(1-2):145-53. PubMed ID: 12214688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retention time prediction of compounds in Grob standard mixture for apolar capillary columns in temperature-programmed gas chromatography.
    Thewalim Y; Aldaeus F; Colmsjö A
    Anal Bioanal Chem; 2009 Jan; 393(1):327-34. PubMed ID: 18751687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of water as a novel stationary phase in capillary gas chromatography.
    Gallant JA; Thurbide KB
    J Chromatogr A; 2014 Sep; 1359():247-54. PubMed ID: 25065923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Band-trajectory model for temperature-programmed series-coupled column ensembles with pressure-tunable selectivity.
    McGuigan M; Sacks R
    Anal Chem; 2001 Jul; 73(13):3112-8. PubMed ID: 11467561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of sources of irreproducibility of retention indices under programmed temperature gas chromatography conditions.
    Wu L; Cho IK; Li Y; Zhang G; Li QX
    J Chromatogr A; 2017 Apr; 1495():57-63. PubMed ID: 28343685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of dialkyl sulfides by metallo-mesogenic stationary phases for complexation gas chromatography.
    Chen JL; Liu CY
    J Chromatogr A; 2007 Aug; 1161(1-2):269-74. PubMed ID: 17568598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.