These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12779231)

  • 1. Determination of spore concentration in Bacillus thuringiensis through the analysis of dipicolinate by capillary zone electrophoresis.
    He J; Luo X; Chen S; Cao L; Sun M; Yu Z
    J Chromatogr A; 2003 Apr; 994(1-2):207-12. PubMed ID: 12779231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of poly-beta-hydroxybutyric acid in Bacillus thuringiensis by capillary zone electrophoresis with indirect ultraviolet absorbance detection.
    He J; Chen S; Yu Z
    J Chromatogr A; 2002 Oct; 973(1-2):197-202. PubMed ID: 12437178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endospore dipicolinic acid detection during Bacillus thuringiensis culture.
    Navarro AK; Peña A; Pérez-Guevara F
    Lett Appl Microbiol; 2008 Feb; 46(2):166-70. PubMed ID: 18069985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light.
    Nelson WH; Dasari R; Feld M; Sperry JF
    Appl Spectrosc; 2004 Dec; 58(12):1408-12. PubMed ID: 15606952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of calcium dipicolinate release during bacterial spore germination by using a new, sensitive assay for dipicolinate.
    Scott IR; Ellar DJ
    J Bacteriol; 1978 Jul; 135(1):133-7. PubMed ID: 97264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry.
    Srivastava A; Pitesky ME; Steele PT; Tobias HJ; Fergenson DP; Horn JM; Russell SC; Czerwieniec GA; Lebrilla CB; Gard EE; Frank M
    Anal Chem; 2005 May; 77(10):3315-23. PubMed ID: 15889924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the fungicide validamycin A by capillary zone electrophoresis with indirect UV detection.
    He J; Chen SW; Ruan LF; Cao LL; Yao J; Yu ZN
    J Agric Food Chem; 2003 Dec; 51(26):7523-7. PubMed ID: 14664501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of killing of spores of Bacillus anthracis in a high-temperature gas environment, and analysis of DNA damage generated by various decontamination treatments of spores of Bacillus anthracis, Bacillus subtilis and Bacillus thuringiensis.
    Setlow B; Parish S; Zhang P; Li YQ; Neely WC; Setlow P
    J Appl Microbiol; 2014 Apr; 116(4):805-14. PubMed ID: 24344920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of spore outgrowth and vegetative growth of Bacillus stearothermophilus by dipicolinate.
    Fields ML; Frank HA
    J Bacteriol; 1973 May; 114(2):878-9. PubMed ID: 4574703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser Raman spectroscopy of lyophilized bacterial spores.
    Shibata H; Yamashita S; Ohe M; Tani I
    Microbiol Immunol; 1986; 30(4):307-13. PubMed ID: 3088398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores.
    Gonçalves LC; Da Silva SM; DeRose PC; Ando RA; Bastos EL
    PLoS One; 2013; 8(9):e73701. PubMed ID: 24019934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of dipicolinic acid in bacterial spores by derivative spectroscopy.
    Warth AD
    Anal Biochem; 1983 Apr; 130(2):502-5. PubMed ID: 6408947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release.
    Kort R; O'Brien AC; van Stokkum IH; Oomes SJ; Crielaard W; Hellingwerf KJ; Brul S
    Appl Environ Microbiol; 2005 Jul; 71(7):3556-64. PubMed ID: 16000762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of chromium (III) and chromium (VI) by capillary electrophoresis using 2,6-pyridinedicarboxylic acid as a pre-column complexation agent.
    Chen Z; Naidu R; Subramanian A
    J Chromatogr A; 2001 Aug; 927(1-2):219-27. PubMed ID: 11572392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of pyrroloquinoline quinone by capillary zone electrophoresis.
    Glatz Z; Moravcová M; Janiczek O
    J Chromatogr B Biomed Sci Appl; 2000 Feb; 739(1):101-7. PubMed ID: 10744318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.
    Hintze PE; Nicholson WL
    Arch Microbiol; 2010 Jun; 192(6):493-7. PubMed ID: 20396869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a capillary zone electrophoresis method for the determination of benzalkonium chlorides in ophthalmic solutions.
    Hou YH; Wu CY; Ding WH
    J Chromatogr A; 2002 Nov; 976(1-2):207-13. PubMed ID: 12462611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The infrared spectra of Bacillus bacteria part II: sporulated Bacillus--the effect of vegetative cells and contributions of calcium dipicolinate trihydrate, CaDP.3H2O.
    Johnson TJ; Williams SD; Valentine NB; Su YF
    Appl Spectrosc; 2009 Aug; 63(8):908-15. PubMed ID: 19678987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers.
    Huang SS; Chen D; Pelczar PL; Vepachedu VR; Setlow P; Li YQ
    J Bacteriol; 2007 Jul; 189(13):4681-7. PubMed ID: 17468248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epimeric separation of L-ascorbic acid and D-isoascorbic acid by capillary zone electrophoresis.
    Liao T; Wu JS; Wu MC; Chang HM
    J Agric Food Chem; 2000 Jan; 48(1):37-41. PubMed ID: 10637048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.