These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 12779235)
1. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Gaballa A; Helmann JD Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235 [TBL] [Abstract][Full Text] [Related]
2. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. Radford DS; Kihlken MA; Borrelly GP; Harwood CR; Le Brun NE; Cavet JS FEMS Microbiol Lett; 2003 Mar; 220(1):105-12. PubMed ID: 12644235 [TBL] [Abstract][Full Text] [Related]
3. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance. Solovieva IM; Entian KD FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800 [TBL] [Abstract][Full Text] [Related]
4. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Gaballa A; Cao M; Helmann JD Microbiology (Reading); 2003 Dec; 149(Pt 12):3413-3421. PubMed ID: 14663075 [TBL] [Abstract][Full Text] [Related]
5. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Moore CM; Gaballa A; Hui M; Ye RW; Helmann JD Mol Microbiol; 2005 Jul; 57(1):27-40. PubMed ID: 15948947 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd(2+) ion resistance. Solovieva IM; Entian KD FEMS Microbiol Lett; 2002 Feb; 208(1):105-9. PubMed ID: 11934502 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. González-Guerrero M; Argüello JM Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453 [TBL] [Abstract][Full Text] [Related]
9. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
10. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Rensing C; Fan B; Sharma R; Mitra B; Rosen BP Proc Natl Acad Sci U S A; 2000 Jan; 97(2):652-6. PubMed ID: 10639134 [TBL] [Abstract][Full Text] [Related]
11. Structure and Function of Cu(I)- and Zn(II)-ATPases. Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333 [TBL] [Abstract][Full Text] [Related]
12. Toward a molecular understanding of metal transport by P(1B)-type ATPases. Rosenzweig AC; Argüello JM Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649 [TBL] [Abstract][Full Text] [Related]
13. The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. Lu ZH; Dameron CT; Solioz M Biometals; 2003 Mar; 16(1):137-43. PubMed ID: 12572673 [TBL] [Abstract][Full Text] [Related]
14. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P Smith AT; Ross MO; Hoffman BM; Rosenzweig AC Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366 [TBL] [Abstract][Full Text] [Related]
15. Characterization and comparison of metal accumulation in two Escherichia coli strains expressing either CopA or MntA, heavy metal-transporting bacterial P-type adenosine triphosphatases. Zagorski N; Wilson DB Appl Biochem Biotechnol; 2004 Apr; 117(1):33-48. PubMed ID: 15126702 [TBL] [Abstract][Full Text] [Related]
16. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Scherer J; Nies DH Mol Microbiol; 2009 Aug; 73(4):601-21. PubMed ID: 19602147 [TBL] [Abstract][Full Text] [Related]
17. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Raimunda D; González-Guerrero M; Leeber BW; Argüello JM Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186 [TBL] [Abstract][Full Text] [Related]
18. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. Liu XS; Feng SJ; Zhang BQ; Wang MQ; Cao HW; Rono JK; Chen X; Yang ZM BMC Plant Biol; 2019 Jun; 19(1):283. PubMed ID: 31248369 [TBL] [Abstract][Full Text] [Related]
19. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580 [TBL] [Abstract][Full Text] [Related]
20. Dysregulation of Magnesium Transport Protects Bacillus subtilis against Manganese and Cobalt Intoxication. Pi H; Wendel BM; Helmann JD J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31964700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]