BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12779235)

  • 1. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems.
    Gaballa A; Helmann JD
    Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.
    Radford DS; Kihlken MA; Borrelly GP; Harwood CR; Le Brun NE; Cavet JS
    FEMS Microbiol Lett; 2003 Mar; 220(1):105-12. PubMed ID: 12644235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance.
    Solovieva IM; Entian KD
    FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon.
    Gaballa A; Cao M; Helmann JD
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3413-3421. PubMed ID: 14663075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and physiological responses of Bacillus subtilis to metal ion stress.
    Moore CM; Gaballa A; Hui M; Ye RW; Helmann JD
    Mol Microbiol; 2005 Jul; 57(1):27-40. PubMed ID: 15948947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CsoR regulates the copper efflux operon copZA in Bacillus subtilis.
    Smaldone GT; Helmann JD
    Microbiology (Reading); 2007 Dec; 153(Pt 12):4123-4128. PubMed ID: 18048925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd(2+) ion resistance.
    Solovieva IM; Entian KD
    FEMS Microbiol Lett; 2002 Feb; 208(1):105-9. PubMed ID: 11934502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase.
    Rensing C; Fan B; Sharma R; Mitra B; Rosen BP
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):652-6. PubMed ID: 10639134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Function of Cu(I)- and Zn(II)-ATPases.
    Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P
    Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a molecular understanding of metal transport by P(1B)-type ATPases.
    Rosenzweig AC; Argüello JM
    Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions.
    Lu ZH; Dameron CT; Solioz M
    Biometals; 2003 Mar; 16(1):137-43. PubMed ID: 12572673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P
    Smith AT; Ross MO; Hoffman BM; Rosenzweig AC
    Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and comparison of metal accumulation in two Escherichia coli strains expressing either CopA or MntA, heavy metal-transporting bacterial P-type adenosine triphosphatases.
    Zagorski N; Wilson DB
    Appl Biochem Biotechnol; 2004 Apr; 117(1):33-48. PubMed ID: 15126702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34.
    Scherer J; Nies DH
    Mol Microbiol; 2009 Aug; 73(4):601-21. PubMed ID: 19602147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice.
    Liu XS; Feng SJ; Zhang BQ; Wang MQ; Cao HW; Rono JK; Chen X; Yang ZM
    BMC Plant Biol; 2019 Jun; 19(1):283. PubMed ID: 31248369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis.
    Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L
    Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation of Magnesium Transport Protects Bacillus subtilis against Manganese and Cobalt Intoxication.
    Pi H; Wendel BM; Helmann JD
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31964700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.