These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 12779239)
1. Trishydroxamates and triscatecholates based on monosaccharides and myo-inositol as artificial siderophores. Heggemann S; Möllmann U; Gebhardt P; Heinisch L Biometals; 2003 Dec; 16(4):539-51. PubMed ID: 12779239 [TBL] [Abstract][Full Text] [Related]
2. Catecholates and mixed catecholate hydroxamates as artificial siderophores for mycobacteria. Wittmann S; Heinisch L; Scherlitz-Hofmann I; Stoiber T; Ankel-Fuchs D; Möllmann U Biometals; 2004 Feb; 17(1):53-64. PubMed ID: 14977362 [TBL] [Abstract][Full Text] [Related]
3. Novel catecholate-type siderophore analogs based on a myo-inositol scaffold. Schnabelrauch M; Egbe DA; Heinisch L; Reissbrodt R; Möllmann U Biometals; 1998 Sep; 11(3):243-51. PubMed ID: 9850568 [TBL] [Abstract][Full Text] [Related]
4. New synthetic catecholate-type siderophores based on amino acids and dipeptides. Schnabelrauch M; Wittmann S; Rahn K; Möllmann U; Reissbrodt R; Heinisch L Biometals; 2000 Dec; 13(4):333-48. PubMed ID: 11247040 [TBL] [Abstract][Full Text] [Related]
5. New synthetic catecholate-type siderophores with triamine backbone. Heinisch L; Gebhardt P; Heidersbach R; Reissbrodt R; Möllmann U Biometals; 2002 Jun; 15(2):133-44. PubMed ID: 12046921 [TBL] [Abstract][Full Text] [Related]
6. New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides. Wittmann S; Schnabelrauch M; Scherlitz-Hofmann I; Möllmann U; Ankel-Fuchs D; Heinisch L Bioorg Med Chem; 2002 Jun; 10(6):1659-70. PubMed ID: 11937324 [TBL] [Abstract][Full Text] [Related]
7. Selective growth promotion and growth inhibition of gram-negative and gram-positive bacteria by synthetic siderophore-beta-lactam conjugates. Möllmann U; Ghosh A; Dolence EK; Dolence JA; Ghosh M; Miller MJ; Reissbrodt R Biometals; 1998 Jan; 11(1):1-12. PubMed ID: 9450313 [TBL] [Abstract][Full Text] [Related]
8. New artificial siderophores based on a monosaccharide scaffold. Heggemann S; Schnabelrauch M; Klemm D; Möllmann U; Reissbrodt R; Heinisch L Biometals; 2001 Mar; 14(1):1-11. PubMed ID: 11368270 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and biological activity of tris- and tetrakiscatecholate siderophores based on poly-aza alkanoic acids or alkylbenzoic acids and their conjugates with beta-lactam antibiotics. Heinisch L; Wittmann S; Stoiber T; Scherlitz-Hofmann I; Ankel-Fuchs D; Möllmann U Arzneimittelforschung; 2003; 53(3):188-95. PubMed ID: 12705174 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol- and hydroxamate-containing siderophore--vancomycin conjugates. Ghosh M; Miller MJ Bioorg Med Chem; 1996 Jan; 4(1):43-8. PubMed ID: 8689237 [TBL] [Abstract][Full Text] [Related]
11. Desketoneoenactin-siderophore conjugates for Candida: evidence of iron transport-dependent species selectivity. Bernier G; Girijavallabhan V; Murray A; Niyaz N; Ding P; Miller MJ; Malouin F Antimicrob Agents Chemother; 2005 Jan; 49(1):241-8. PubMed ID: 15616301 [TBL] [Abstract][Full Text] [Related]
12. Species selectivity of new siderophore-drug conjugates that use specific iron uptake for entry into bacteria. Diarra MS; Lavoie MC; Jacques M; Darwish I; Dolence EK; Dolence JA; Ghosh A; Ghosh M; Miller MJ; Malouin F Antimicrob Agents Chemother; 1996 Nov; 40(11):2610-7. PubMed ID: 8913474 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and biological activity of saccharide based lipophilic siderophore mimetics as potential growth promoters for mycobacteria. Gebhardt P; Crumbliss AL; Miller MJ; Möllmann U Biometals; 2008 Feb; 21(1):41-51. PubMed ID: 17390213 [TBL] [Abstract][Full Text] [Related]
14. Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds. Heinisch L; Wittmann S; Stoiber T; Berg A; Ankel-Fuchs D; Möllmann U J Med Chem; 2002 Jul; 45(14):3032-40. PubMed ID: 12086488 [TBL] [Abstract][Full Text] [Related]
15. Iron(III)-templated macrolactonization of trihydroxamate siderophores. Wencewicz TA; Oliver AG; Miller MJ Org Lett; 2012 Sep; 14(17):4390-3. PubMed ID: 22906163 [TBL] [Abstract][Full Text] [Related]
16. Glycosiderophores: synthesis of tris-hydroxamate siderophores based on a galactose or glycero central scaffold, Fe(III) complexation studies. Neff C; Bellot F; Waern JB; Lambert F; Brandel J; Serratrice G; Gaboriau F; Policar C J Inorg Biochem; 2012 Jul; 112():59-67. PubMed ID: 22551986 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided design of novel siderophores: pyridinochelin. Meyer M; Schnurre R; Reissbrodt R; Trowitzsch-Kienast W Z Naturforsch C J Biosci; 2001; 56(7-8):540-6. PubMed ID: 11531087 [TBL] [Abstract][Full Text] [Related]
18. Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity. Ji C; Miller PA; Miller MJ J Am Chem Soc; 2012 Jun; 134(24):9898-901. PubMed ID: 22656303 [TBL] [Abstract][Full Text] [Related]
19. Fe(III) coordination properties of two new saccharide-based enterobactin analogues: methyl 2,3,4-tris-O-[N-[2,3-di(hydroxy)benzoyl-glycyl]-aminopropyl]-alpha-D-glucopyranoside and methyl 2,3,4-tris-O-[N-[2,3-di-(hydroxy)-benzoyl]-aminopropyl]-alpha-D-glucopyranoside. Dhungana S; Heggemann S; Heinisch L; Möllmann U; Boukhalfa H; Crumbliss AL Inorg Chem; 2001 Dec; 40(27):7079-86. PubMed ID: 11754294 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and biological evaluation of new citrate-based siderophores as potential probes for the mechanism of iron uptake in mycobacteria. Guo H; Naser SA; Ghobrial G; Phanstiel O J Med Chem; 2002 May; 45(10):2056-63. PubMed ID: 11985473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]