These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Advection of passive particles in the Kolmogorov flow. Beyer P; Benkadda S Chaos; 2001 Dec; 11(4):774-779. PubMed ID: 12779516 [TBL] [Abstract][Full Text] [Related]
3. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture. Novakowski KS; Bickerton G; Lapcevic P J Contam Hydrol; 2004 Sep; 73(1-4):227-47. PubMed ID: 15336796 [TBL] [Abstract][Full Text] [Related]
4. Chaotic advection, diffusion, and reactions in open flows. Tel T; Karolyi G; Pentek A; Scheuring I; Toroczkai Z; Grebogi C; Kadtke J Chaos; 2000 Mar; 10(1):89-98. PubMed ID: 12779365 [TBL] [Abstract][Full Text] [Related]
5. Chaotic mixing of granular materials in two-dimensional tumbling mixers. Khakhar DV; McCarthy JJ; Gilchrist JF; Ottino JM Chaos; 1999 Mar; 9(1):195-205. PubMed ID: 12779813 [TBL] [Abstract][Full Text] [Related]
6. Description of sorbing tracers transport in fractured media using the lattice model approach. Jiménez-Hornero FJ; Giráldez JV; Laguna A J Contam Hydrol; 2005 Dec; 81(1-4):187-204. PubMed ID: 16183166 [TBL] [Abstract][Full Text] [Related]
7. Anomalous transport of colloids and solutes in a shear zone. Kosakowski G J Contam Hydrol; 2004 Aug; 72(1-4):23-46. PubMed ID: 15240165 [TBL] [Abstract][Full Text] [Related]
8. Mean value and fluctuations in a model of diffusion in porous media. Ourrad O; Erochenkova G; Lima R; Vittot M Chaos; 2006 Sep; 16(3):033128. PubMed ID: 17014233 [TBL] [Abstract][Full Text] [Related]
9. Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation. Hurtado PI; Lasanta A; Prados A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022110. PubMed ID: 24032778 [TBL] [Abstract][Full Text] [Related]
10. Reaction-diffusion-advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the physarum plasmodium. Nakagaki T; Yamada H; Ito M J Theor Biol; 1999 Apr; 197(4):497-506. PubMed ID: 10196092 [TBL] [Abstract][Full Text] [Related]
11. Probability density function of non-reactive solute concentration in heterogeneous porous formations. Bellin A; Tonina D J Contam Hydrol; 2007 Oct; 94(1-2):109-25. PubMed ID: 17628204 [TBL] [Abstract][Full Text] [Related]
12. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program. Bodin J; Porel G; Delay F; Ubertosi F; Bernard S; de Dreuzy JR J Contam Hydrol; 2007 Jan; 89(1-2):1-28. PubMed ID: 16962206 [TBL] [Abstract][Full Text] [Related]
13. Statistics of velocity fluctuations arising from a random distribution of point vortices: the speed of fluctuations and the diffusion coefficient. Chavanis PH; Sire C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):490-506. PubMed ID: 11088485 [TBL] [Abstract][Full Text] [Related]
15. Chaotic mixing induced transitions in reaction-diffusion systems. Neufeld Z; Haynes PH; Tel T Chaos; 2002 Jun; 12(2):426-438. PubMed ID: 12779573 [TBL] [Abstract][Full Text] [Related]
16. Self-consistent chaotic transport in fluids and plasmas. Del-Castillo-Negrete D Chaos; 2000 Mar; 10(1):75-88. PubMed ID: 12779364 [TBL] [Abstract][Full Text] [Related]
17. Large fluctuations in driven dissipative media. Prados A; Lasanta A; Hurtado PI Phys Rev Lett; 2011 Sep; 107(14):140601. PubMed ID: 22107181 [TBL] [Abstract][Full Text] [Related]
18. Effect of gravity on the dynamics of nonequilibrium fluctuations in a free-diffusion experiment. Croccolo F; Brogioli D; Vailati A; Giglio M; Cannell DS Ann N Y Acad Sci; 2006 Sep; 1077():365-79. PubMed ID: 17124135 [TBL] [Abstract][Full Text] [Related]
19. Effect of density-driven flow on the through-diffusion experiment. Kirino Y; Yokoyama T; Hirono T; Nakajima T; Nakashima S J Contam Hydrol; 2009 May; 106(3-4):166-72. PubMed ID: 19324454 [TBL] [Abstract][Full Text] [Related]
20. Continuum formulation of the Scheutjens-Fleer lattice statistical theory for homopolymer adsorption from solution. Mavrantzas VG; Beris AN; Leermakers F; Fleer GJ J Chem Phys; 2005 Nov; 123(17):174901. PubMed ID: 16375563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]