These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 12779374)
1. Spectral properties and anomalous transport in a polygonal billiard. Artuso R; Guarneri I; Rebuzzini L Chaos; 2000 Mar; 10(1):189-194. PubMed ID: 12779374 [TBL] [Abstract][Full Text] [Related]
2. Convergence of Hamiltonian systems to billiards. Collas P; Klein D; Schwebler HP Chaos; 1998 Jun; 8(2):466-474. PubMed ID: 12779750 [TBL] [Abstract][Full Text] [Related]
3. Complexity lower bounds for polygonal billiards. Troubetzkoy S Chaos; 1998 Mar; 8(1):242-244. PubMed ID: 12779725 [TBL] [Abstract][Full Text] [Related]
4. Weak mixing and anomalous kinetics along filamented surfaces. Zaslavsky GM; Edelman M Chaos; 2001 Jun; 11(2):295-305. PubMed ID: 12779463 [TBL] [Abstract][Full Text] [Related]
5. Polygonal billiards and transport: diffusion and heat conduction. Alonso D; Ruiz A; De Vega I Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066131. PubMed ID: 12513371 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of a gravitational billiard with a hyperbolic lower boundary. Ferguson ML; Miller BN; Thompson MA Chaos; 1999 Dec; 9(4):841-848. PubMed ID: 12779879 [TBL] [Abstract][Full Text] [Related]
8. Occurrence of normal and anomalous diffusion in polygonal billiard channels. Sanders DP; Larralde H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026205. PubMed ID: 16605427 [TBL] [Abstract][Full Text] [Related]
9. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Li B; Wang J; Wang L; Zhang G Chaos; 2005 Mar; 15(1):15121. PubMed ID: 15836298 [TBL] [Abstract][Full Text] [Related]
10. Ergodicity of the generalized lemon billiards. Chen J; Mohr L; Zhang HK; Zhang P Chaos; 2013 Dec; 23(4):043137. PubMed ID: 24387576 [TBL] [Abstract][Full Text] [Related]
11. Fermi acceleration in chaotic shape-preserving billiards. Batistić B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550 [TBL] [Abstract][Full Text] [Related]
12. Impact of symmetry on ergodic properties of triangular billiards. Zahradova K; Slipantschuk J; Bandtlow OF; Just W Phys Rev E; 2022 Jan; 105(1):L012201. PubMed ID: 35193198 [TBL] [Abstract][Full Text] [Related]
13. Time-reversal-invariant hexagonal billiards with a point symmetry. Lima TA; do Carmo RB; Terto K; de Aguiar FM Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857 [TBL] [Abstract][Full Text] [Related]
14. A simple non-chaotic map generating subdiffusive, diffusive, and superdiffusive dynamics. Salari L; Rondoni L; Giberti C; Klages R Chaos; 2015 Jul; 25(7):073113. PubMed ID: 26232964 [TBL] [Abstract][Full Text] [Related]
19. A two-parameter study of the extent of chaos in a billiard system. Dullin HR; Richter PH; Wittek A Chaos; 1996 Mar; 6(1):43-58. PubMed ID: 12780234 [TBL] [Abstract][Full Text] [Related]
20. An analytical construction of the SRB measures for Baker-type maps. Tasaki S; Gilbert T; Dorfman JR Chaos; 1998 Jun; 8(2):424-443. PubMed ID: 12779746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]