These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Escape orbits for non-compact flat billiards. Lenci M Chaos; 1996 Sep; 6(3):428-431. PubMed ID: 12780272 [TBL] [Abstract][Full Text] [Related]
43. Spectral properties of quantized barrier billiards. Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046217. PubMed ID: 12005986 [TBL] [Abstract][Full Text] [Related]
44. Vertical chaos and horizontal diffusion in the bouncing-ball billiard. de Wijn AS; Kantz H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046214. PubMed ID: 17500985 [TBL] [Abstract][Full Text] [Related]
45. The dynamics of single chains within a model polymer melt. McCormick JA; Hall CK; Khan SA J Chem Phys; 2005 Mar; 122(11):114902. PubMed ID: 15836252 [TBL] [Abstract][Full Text] [Related]
46. Surface quasigeostrophic turbulence: The study of an active scalar. Sukhatme J; Pierrehumbert RT Chaos; 2002 Jun; 12(2):439-450. PubMed ID: 12779574 [TBL] [Abstract][Full Text] [Related]
47. Dynamical properties of chemical systems near Hopf bifurcation points. Ipsen M; Schreiber I Chaos; 2000 Dec; 10(4):791-802. PubMed ID: 12779429 [TBL] [Abstract][Full Text] [Related]
48. A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Mezic I; Wiggins S Chaos; 1999 Mar; 9(1):213-218. PubMed ID: 12779816 [TBL] [Abstract][Full Text] [Related]
49. "Dynamical confinement" in neural networks and cell cycle. Demongeot J; Benaouda D; Jezequel C Chaos; 1995 Mar; 5(1):167-173. PubMed ID: 12780170 [TBL] [Abstract][Full Text] [Related]
50. Dynamical behavior of the multiplicative diffusion coupled map lattices. Wang W; Cerdeira HA Chaos; 1996 Jun; 6(2):200-208. PubMed ID: 12780248 [TBL] [Abstract][Full Text] [Related]
51. Turning point properties as a method for the characterization of the ergodic dynamics of one-dimensional iterative maps. Diakonos FK; Schmelcher P Chaos; 1997 Jun; 7(2):239-244. PubMed ID: 12779652 [TBL] [Abstract][Full Text] [Related]
52. Evanescent wave approach to diffractive phenomena in convex billiards with corners. Wiersig J; Carlo GG Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046221. PubMed ID: 12786474 [TBL] [Abstract][Full Text] [Related]
53. Ergodicity and quantum correlations in irrational triangular billiards. Araújo Lima T; Rodríguez-Pérez S; de Aguiar FM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062902. PubMed ID: 23848743 [TBL] [Abstract][Full Text] [Related]
54. Superdiffusion in a honeycomb billiard. Schmiedeberg M; Stark H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031113. PubMed ID: 16605506 [TBL] [Abstract][Full Text] [Related]
55. What is the role of chaotic scattering in irreversible processes? Gaspard P Chaos; 1993 Oct; 3(4):427-442. PubMed ID: 12780050 [TBL] [Abstract][Full Text] [Related]
56. Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards. Cristadoro G; Gilbert T; Lenci M; Sanders DP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):050102. PubMed ID: 25493720 [TBL] [Abstract][Full Text] [Related]