These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 12779375)

  • 1. Statistical properties of actions of periodic orbits.
    Sano MM
    Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices.
    Giberti C; Vernia C
    Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics.
    Buhl M; Kennel MB
    Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A note on chaotic unimodal maps and applications.
    Zhou CT; He XT; Yu MY; Chew LY; Wang XG
    Chaos; 2006 Sep; 16(3):033113. PubMed ID: 17014218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional three-body problem via symbolic dynamics.
    Tanikawa K; Mikkola S
    Chaos; 2000 Sep; 10(3):649-657. PubMed ID: 12779414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization.
    Letellier C; Dutertre P; Maheu B
    Chaos; 1995 Mar; 5(1):271-282. PubMed ID: 12780181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible maps in two-degrees of freedom Hamiltonian systems.
    Zare K; Tanikawa K
    Chaos; 2002 Sep; 12(3):699-705. PubMed ID: 12779598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic orbits in a two-variable coupled map.
    Houlrik JM
    Chaos; 1992 Jul; 2(3):323-327. PubMed ID: 12779981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map.
    Akaishi A; Shudo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066211. PubMed ID: 20365258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of periodic orbits: The monodromy method and application to regularized systems.
    Simonovic NS
    Chaos; 1999 Dec; 9(4):854-864. PubMed ID: 12779881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Easy-to-implement method to target nonlinear systems.
    Baptista MS; Caldas IL
    Chaos; 1998 Mar; 8(1):290-299. PubMed ID: 12779732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On a simple recursive control algorithm automated and applied to an electrochemical experiment.
    Rhode MA; Rollins RW; Dewald HD
    Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic orbits of nonscaling Hamiltonian systems from quantum mechanics.
    Baranger M; Haggerty MR; Lauritzen B; Meredith DC; Provost D
    Chaos; 1995 Mar; 5(1):261-270. PubMed ID: 12780180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off.
    Lowenstein J; Hatjispyros S; Vivaldi F
    Chaos; 1997 Mar; 7(1):49-66. PubMed ID: 12779637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global analysis of periodic orbit bifurcations in coupled Morse oscillator systems: time-reversal symmetry, permutational representations and codimension-2 collisions.
    Tsuchiya M; Ezra GS
    Chaos; 1999 Dec; 9(4):819-840. PubMed ID: 12779878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of periodic orbits in the four- and five-body problems.
    Broucke RA
    Ann N Y Acad Sci; 2004 May; 1017():408-21. PubMed ID: 15220159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple model of chaotic advection and scattering.
    Stolovitzky G; Kaper TJ; Sirovich L
    Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence of Hamiltonian systems to billiards.
    Collas P; Klein D; Schwebler HP
    Chaos; 1998 Jun; 8(2):466-474. PubMed ID: 12779750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexity of regular invertible p-adic motions.
    Pettigrew J; Roberts JA; Vivaldi F
    Chaos; 2001 Dec; 11(4):849-857. PubMed ID: 12779524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.